{"title":"FINITE ELEMENT ANALYSIS OF FEMORAL PROSTHESIS UNDER TRANSIENT LOADING FOR MULTIPLE ACTIVITIES OF DAILY LIVING","authors":"Rabiteja Patra, Shreeshan Jena, Harish Chandra Das, Asita Kumar Rath","doi":"10.4015/s1016237222500168","DOIUrl":null,"url":null,"abstract":"The femoral prostheses experience versatile loading during the activities of daily living (ADL) and subsequently encounter a variety of stresses. This paper presents a detailed finite element analysis (FEA) of the femoral implant under transient loading. The distinct loading patterns corresponding to the most commonly occurring ADL are utilized for simulating the different scenarios. The CT reconstructed CAD model of the human femur bone assembled with a femoral implant is utilized for this study. The loading scenarios for walking, stair ascent, stair descent, standing up, sitting down, standing on one leg and knee bending are simulated by using the joint reaction forces and moments, corresponding to a body weight of 750 N, for the FEA. The results of this study are validated using a preliminary in-house built experimental setup comprising a fixture for a stainless steel femoral implant with sensors attached at three locations on the implant. The results indicate that the highest stresses are generated in case of the stair descent, stair ascent and standing on a single leg type of activities. These activities that generate high stresses on the implant surfaces are not suitable for the longevity of the implant and are therefore not advisable for post-operative patients.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"249 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237222500168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The femoral prostheses experience versatile loading during the activities of daily living (ADL) and subsequently encounter a variety of stresses. This paper presents a detailed finite element analysis (FEA) of the femoral implant under transient loading. The distinct loading patterns corresponding to the most commonly occurring ADL are utilized for simulating the different scenarios. The CT reconstructed CAD model of the human femur bone assembled with a femoral implant is utilized for this study. The loading scenarios for walking, stair ascent, stair descent, standing up, sitting down, standing on one leg and knee bending are simulated by using the joint reaction forces and moments, corresponding to a body weight of 750 N, for the FEA. The results of this study are validated using a preliminary in-house built experimental setup comprising a fixture for a stainless steel femoral implant with sensors attached at three locations on the implant. The results indicate that the highest stresses are generated in case of the stair descent, stair ascent and standing on a single leg type of activities. These activities that generate high stresses on the implant surfaces are not suitable for the longevity of the implant and are therefore not advisable for post-operative patients.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.