Characteristics of variable plate conditions on the time-dependent flow of polar fluid over an expanding/contracting surface

IF 4.2 Q2 NANOSCIENCE & NANOTECHNOLOGY
S. Baag, Satyaranjan Mishra, P. Mathur
{"title":"Characteristics of variable plate conditions on the time-dependent flow of polar fluid over an expanding/contracting surface","authors":"S. Baag, Satyaranjan Mishra, P. Mathur","doi":"10.1177/23977914221103345","DOIUrl":null,"url":null,"abstract":"The present scenario intended for the flow phenomena of micropolar fluid past an expanding/contracting surface is carried out to reveal the impact of a drag coefficient. Free convection due to the inclusion of the buoyant forces along with the radiative heat energy and non-uniform heat source/sink encourages the flow properties. The novelty of the present investigation is the use of variable plate conditions that affect the flow properties greatly. The transformation of the governing flow phenomena is obtained with the use of suitable similarity transformation and numerical treatment based upon Runge-Kutta fourth-order followed by shooting is imposed to get the solution of this transformed nonlinear system. Further, the simulation of the characterizing parameters is obtained and presented via graphs and tables. The major findings are; the enhancement in the axial velocity is characterized by the non-Newtonian behavior of the fluid and both the space and temperature dependent heat source favors for the augmentation in the fluid temperature.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":"15 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914221103345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The present scenario intended for the flow phenomena of micropolar fluid past an expanding/contracting surface is carried out to reveal the impact of a drag coefficient. Free convection due to the inclusion of the buoyant forces along with the radiative heat energy and non-uniform heat source/sink encourages the flow properties. The novelty of the present investigation is the use of variable plate conditions that affect the flow properties greatly. The transformation of the governing flow phenomena is obtained with the use of suitable similarity transformation and numerical treatment based upon Runge-Kutta fourth-order followed by shooting is imposed to get the solution of this transformed nonlinear system. Further, the simulation of the characterizing parameters is obtained and presented via graphs and tables. The major findings are; the enhancement in the axial velocity is characterized by the non-Newtonian behavior of the fluid and both the space and temperature dependent heat source favors for the augmentation in the fluid temperature.
膨胀/收缩表面上极性流体随时间流动的变板条件特征
本方案旨在为流动现象的微极流体通过膨胀/收缩表面进行,以揭示阻力系数的影响。自由对流由于浮力与辐射热能和非均匀热源/汇的结合而促进了流动特性。本研究的新颖之处在于使用了对流动特性影响很大的可变板条件。采用适当的相似变换对控制流现象进行变换,并采用龙格-库塔四阶数值处理,然后进行射击,得到变换后的非线性系统的解。此外,还通过图形和表格的形式给出了表征参数的仿真结果。主要发现是;轴向速度的提高以流体的非牛顿行为为特征,空间热源和温度热源都有利于流体温度的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
1.70%
发文量
24
期刊介绍: Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信