A Class of R*-tree Indexes for Spatial-Visual Search of Geo-tagged Street Images

Abdullah Alfarrarjeh, S. H. Kim, V. Hegde, Akshansh, C. Shahabi, Q. Xie, S. Ravada
{"title":"A Class of R*-tree Indexes for Spatial-Visual Search of Geo-tagged Street Images","authors":"Abdullah Alfarrarjeh, S. H. Kim, V. Hegde, Akshansh, C. Shahabi, Q. Xie, S. Ravada","doi":"10.1109/ICDE48307.2020.00221","DOIUrl":null,"url":null,"abstract":"Due to the prevalence of GPS-equipped cameras (e.g., smartphones and surveillance cameras), massive amounts of geo-tagged images capturing urban streets are increasingly being collected. Consequently, many smart city applications have emerged, relying on efficient image search. Such searches include spatial-visual queries in which spatial and visual properties are used in tandem to retrieve similar images to a given query image within a given geographical region. Towards this end, new index structures that organize images based on both spatial and visual properties are needed to efficiently execute such queries. Based on our observation that street images are typically similar in the same spatial locality, index structures for spatial-visual queries can be effectively built on a spatial index (i.e., R*-tree). Therefore, we propose a class of R*-tree indexes, particularly, by associating each node with two separate minimum bounding rectangles (MBR), one for spatial and the other for (dimension-reduced) visual properties of their contained images, and adapting the R*-tree optimization criteria to both property types.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"49 1","pages":"1990-1993"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Due to the prevalence of GPS-equipped cameras (e.g., smartphones and surveillance cameras), massive amounts of geo-tagged images capturing urban streets are increasingly being collected. Consequently, many smart city applications have emerged, relying on efficient image search. Such searches include spatial-visual queries in which spatial and visual properties are used in tandem to retrieve similar images to a given query image within a given geographical region. Towards this end, new index structures that organize images based on both spatial and visual properties are needed to efficiently execute such queries. Based on our observation that street images are typically similar in the same spatial locality, index structures for spatial-visual queries can be effectively built on a spatial index (i.e., R*-tree). Therefore, we propose a class of R*-tree indexes, particularly, by associating each node with two separate minimum bounding rectangles (MBR), one for spatial and the other for (dimension-reduced) visual properties of their contained images, and adapting the R*-tree optimization criteria to both property types.
一类基于R*树索引的地理标记街道图像空间视觉搜索
由于配备gps的摄像头(如智能手机和监控摄像头)的普及,越来越多地收集了大量带有地理标记的城市街道图像。因此,许多智慧城市应用已经出现,依赖于高效的图像搜索。这样的搜索包括空间视觉查询,其中空间和视觉属性被串联使用以检索给定地理区域内给定查询图像的类似图像。为此,需要基于空间和视觉属性组织图像的新索引结构来有效地执行此类查询。根据我们的观察,街道图像在相同的空间位置通常是相似的,空间视觉查询的索引结构可以有效地建立在空间索引(即R*树)上。因此,我们提出了一类R*树索引,特别是通过将每个节点与两个单独的最小边界矩形(MBR)相关联,一个用于空间,另一个用于包含图像的(降维)视觉属性,并使R*树优化标准适用于这两种属性类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信