Looking Under the Hood: Deep Neural Network Visualization to Interpret Whole-Slide Image Analysis Outcomes for Colorectal Polyps

Bruno Korbar, Andrea M. Olofson, Allen P. Miraflor, Catherine M. Nicka, M. Suriawinata, L. Torresani, A. Suriawinata, S. Hassanpour
{"title":"Looking Under the Hood: Deep Neural Network Visualization to Interpret Whole-Slide Image Analysis Outcomes for Colorectal Polyps","authors":"Bruno Korbar, Andrea M. Olofson, Allen P. Miraflor, Catherine M. Nicka, M. Suriawinata, L. Torresani, A. Suriawinata, S. Hassanpour","doi":"10.1109/CVPRW.2017.114","DOIUrl":null,"url":null,"abstract":"Histopathological characterization of colorectal polyps is an important principle for determining the risk of colorectal cancer and future rates of surveillance for patients. The process of characterization is time-intensive and requires years of specialized medical training. In this work, we propose a deep-learning-based image analysis approach that not only can accurately classify different types of polyps in whole-slide images, but also generates major regions and features on the slide through a model visualization approach. We argue that this visualization approach will make sense of the underlying reasons for the classification outcomes, significantly reduce the cognitive burden on clinicians, and improve the diagnostic accuracy for whole-slide image characterization tasks. Our results show the efficacy of this network visualization approach in recovering decisive regions and features for different types of polyps on whole-slide images according to the domain expert pathologists.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"17 30 1","pages":"821-827"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

Histopathological characterization of colorectal polyps is an important principle for determining the risk of colorectal cancer and future rates of surveillance for patients. The process of characterization is time-intensive and requires years of specialized medical training. In this work, we propose a deep-learning-based image analysis approach that not only can accurately classify different types of polyps in whole-slide images, but also generates major regions and features on the slide through a model visualization approach. We argue that this visualization approach will make sense of the underlying reasons for the classification outcomes, significantly reduce the cognitive burden on clinicians, and improve the diagnostic accuracy for whole-slide image characterization tasks. Our results show the efficacy of this network visualization approach in recovering decisive regions and features for different types of polyps on whole-slide images according to the domain expert pathologists.
透视:深度神经网络可视化解释结肠直肠息肉的全幻灯片图像分析结果
结直肠息肉的组织病理学特征是确定结直肠癌风险和患者未来监测率的重要原则。鉴定过程耗时,需要多年的专业医学培训。在这项工作中,我们提出了一种基于深度学习的图像分析方法,该方法不仅可以准确地对整个幻灯片图像中的不同类型的息肉进行分类,而且可以通过模型可视化方法生成幻灯片上的主要区域和特征。我们认为,这种可视化方法将使分类结果的潜在原因有意义,显着减轻临床医生的认知负担,并提高整个幻灯片图像表征任务的诊断准确性。我们的结果表明,根据领域专家病理学家的意见,这种网络可视化方法在恢复不同类型息肉的全片图像上的决定性区域和特征方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信