Model shape oriented robust matching of dot cloud data based and its application to defect recognition

H. Kayaba, H. Takauji, S. Kaneko, M. Toda, Kouji Kuno, H. Suganuma
{"title":"Model shape oriented robust matching of dot cloud data based and its application to defect recognition","authors":"H. Kayaba, H. Takauji, S. Kaneko, M. Toda, Kouji Kuno, H. Suganuma","doi":"10.1109/ISOT.2010.5687364","DOIUrl":null,"url":null,"abstract":"We propose a robust algorithm for matching three-dimensional dot cloud data in an effort to detect defects during manufacturing processes. We apply our proposed method to inspect a complex three-dimensional die-cast product. Our approach recognizes the difference between two data sets as a defect after matching the data sets. Moreover, our method improves matching accuracy by detecting geometrical features such as edge points, and by using such property values as gradients. Fundamental experiments using real three-dimensional dot cloud data show that the method is effective as a defect inspection system.","PeriodicalId":91154,"journal":{"name":"Optomechatronic Technologies (ISOT), 2010 International Symposium on : 25-27 Oct. 2010 : [Toronto, ON]. International Symposium on Optomechatronic Technologies (2010 : Toronto, Ont.)","volume":"39 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optomechatronic Technologies (ISOT), 2010 International Symposium on : 25-27 Oct. 2010 : [Toronto, ON]. International Symposium on Optomechatronic Technologies (2010 : Toronto, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOT.2010.5687364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a robust algorithm for matching three-dimensional dot cloud data in an effort to detect defects during manufacturing processes. We apply our proposed method to inspect a complex three-dimensional die-cast product. Our approach recognizes the difference between two data sets as a defect after matching the data sets. Moreover, our method improves matching accuracy by detecting geometrical features such as edge points, and by using such property values as gradients. Fundamental experiments using real three-dimensional dot cloud data show that the method is effective as a defect inspection system.
基于模型形状的点云数据鲁棒匹配及其在缺陷识别中的应用
我们提出了一种鲁棒的三维点云数据匹配算法,以检测制造过程中的缺陷。我们应用我们提出的方法来检查一个复杂的三维压铸产品。我们的方法在匹配数据集后将两个数据集之间的差异识别为缺陷。此外,我们的方法通过检测几何特征(如边缘点)和使用这些属性值(如梯度)来提高匹配精度。利用真实三维点云数据进行的基础实验表明,该方法是一种有效的缺陷检测系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信