{"title":"On the Euclidean Minimum Spanning Tree Problem","authors":"S. Rajasekaran","doi":"10.1163/1574040053326325","DOIUrl":null,"url":null,"abstract":"Given a weighted graph G (V, E), a minimum spanning tree for G can be obtained in linear time using a randomized algorithm or nearly linear time using a deterministic algorithm. Given n points in the plane, we can construct a graph with these points as nodes and an edge between every pair of nodes. The weight on any edge is the Euclidean distance between the two points. Finding a minimum spanning tree for this graph is known as the Euclidean minimum spanning tree problem (EMSTP). The minimum spanning tree algorithms alluded to before will run in time O(n2) (or nearly O(n2)) on this graph. In this note we point out that it is possible to devise simple algorithms for EMSTP in k-dimensions (for any constant k) whose expected run time is O(n), under the assumption that the points are uniformly distributed in the space of interest.","PeriodicalId":101169,"journal":{"name":"Soft Computing Letters","volume":"64 1","pages":"11-14"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Computing Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/1574040053326325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Given a weighted graph G (V, E), a minimum spanning tree for G can be obtained in linear time using a randomized algorithm or nearly linear time using a deterministic algorithm. Given n points in the plane, we can construct a graph with these points as nodes and an edge between every pair of nodes. The weight on any edge is the Euclidean distance between the two points. Finding a minimum spanning tree for this graph is known as the Euclidean minimum spanning tree problem (EMSTP). The minimum spanning tree algorithms alluded to before will run in time O(n2) (or nearly O(n2)) on this graph. In this note we point out that it is possible to devise simple algorithms for EMSTP in k-dimensions (for any constant k) whose expected run time is O(n), under the assumption that the points are uniformly distributed in the space of interest.