{"title":"A Framework for Optimizing Multilevel AC Battery Energy Storage Systems","authors":"Alireza Ramyar, Jason B. Siegel, A. Avestruz","doi":"10.1109/COMPEL52896.2023.10220997","DOIUrl":null,"url":null,"abstract":"Battery energy storage systems (BESS) play an essential role in modern grids by supporting renewable power systems, improving grid power quality through voltage and frequency regulation, and supporting electric vehicle (EV) charging stations. At the same time, and with the rapid growth of EVs, an enormous number of EV batteries will be retired soon. These second-use EV batteries still have approximately 80% capacity and can be utilized in stationary applications like grid-connected BESSs to reduce the emissions from producing new batteries for energy storage systems. Directly producing multilevel AC from batteries reduces cost by eliminating the need for an explicit conventional inverter. In this paper, a framework is presented for optimizing the multilevel integration of power processing in BESSs, which is particularly applicable to BESSs with heterogeneous second-use batteries.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"23 1","pages":"1-8"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/COMPEL52896.2023.10220997","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Battery energy storage systems (BESS) play an essential role in modern grids by supporting renewable power systems, improving grid power quality through voltage and frequency regulation, and supporting electric vehicle (EV) charging stations. At the same time, and with the rapid growth of EVs, an enormous number of EV batteries will be retired soon. These second-use EV batteries still have approximately 80% capacity and can be utilized in stationary applications like grid-connected BESSs to reduce the emissions from producing new batteries for energy storage systems. Directly producing multilevel AC from batteries reduces cost by eliminating the need for an explicit conventional inverter. In this paper, a framework is presented for optimizing the multilevel integration of power processing in BESSs, which is particularly applicable to BESSs with heterogeneous second-use batteries.
期刊介绍:
COMPEL exists for the discussion and dissemination of computational and analytical methods in electrical and electronic engineering. The main emphasis of papers should be on methods and new techniques, or the application of existing techniques in a novel way. Whilst papers with immediate application to particular engineering problems are welcome, so too are papers that form a basis for further development in the area of study. A double-blind review process ensures the content''s validity and relevance.