Observability analysis and identification of critical measurements on three -phase state estimation

D. Toyoshima, M. Castillo, C. A. Fantin, J. London
{"title":"Observability analysis and identification of critical measurements on three -phase state estimation","authors":"D. Toyoshima, M. Castillo, C. A. Fantin, J. London","doi":"10.1109/TDC.2012.6281609","DOIUrl":null,"url":null,"abstract":"This paper provides a numerical approach to observability analysis, pseudo-measurements selection to restore observability, and identification of critical measurements on three-phase state estimation. The approach enables observability analysis and restoration (pseudo-measurements selection) in a straightforward and simple way, without iteration, via triangular factorization of the Jacobian matrix of the weighted least square three-phase state estimator. By analyzing the structure of the matrix resulting from this factorization, the matrix HΔ3θ, the approach enables the identification of critical measurements. Numerical examples to show the performance of the approach are presented.","PeriodicalId":19873,"journal":{"name":"PES T&D 2012","volume":"15 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PES T&D 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2012.6281609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper provides a numerical approach to observability analysis, pseudo-measurements selection to restore observability, and identification of critical measurements on three-phase state estimation. The approach enables observability analysis and restoration (pseudo-measurements selection) in a straightforward and simple way, without iteration, via triangular factorization of the Jacobian matrix of the weighted least square three-phase state estimator. By analyzing the structure of the matrix resulting from this factorization, the matrix HΔ3θ, the approach enables the identification of critical measurements. Numerical examples to show the performance of the approach are presented.
三相状态估计中关键测量值的可观测性分析与辨识
本文给出了三相状态估计中可观测性分析、恢复可观测性的伪测量选择以及临界测量的识别的数值方法。该方法通过加权最小二乘三相状态估计器的雅可比矩阵的三角分解,以直接和简单的方式实现可观测性分析和恢复(伪测量选择),而无需迭代。通过分析因式分解产生的矩阵结构(矩阵HΔ3θ),该方法可以识别关键测量值。最后给出了数值算例,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信