Generalized Bott–Cattaneo–Rossi invariants of high-dimensional long knots

David Leturcq
{"title":"Generalized Bott–Cattaneo–Rossi invariants of high-dimensional long knots","authors":"David Leturcq","doi":"10.2969/JMSJ/82908290","DOIUrl":null,"url":null,"abstract":"Bott, Cattaneo and Rossi defined invariants of long knots $\\mathbb R^n \\hookrightarrow \\mathbb R^{n+2}$ as combinations of configuration space integrals. Here, we give a more flexible definition of these invariants. Our definition allows us to interpret these invariants as counts of diagrams. It extends to long knots inside more general $(n+2)$-manifolds, called parallelized asymptotic homology $\\mathbb R^{n+2}$, and provides invariants of these knots.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2969/JMSJ/82908290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Bott, Cattaneo and Rossi defined invariants of long knots $\mathbb R^n \hookrightarrow \mathbb R^{n+2}$ as combinations of configuration space integrals. Here, we give a more flexible definition of these invariants. Our definition allows us to interpret these invariants as counts of diagrams. It extends to long knots inside more general $(n+2)$-manifolds, called parallelized asymptotic homology $\mathbb R^{n+2}$, and provides invariants of these knots.
高维长节的广义bot - cattaneo - rossi不变量
Bott, cataneo和Rossi将长结点$\mathbb R^n \hookrightarrow \mathbb R^{n+2}$的不变量定义为组态空间积分的组合。这里,我们给这些不变量一个更灵活的定义。我们的定义允许我们将这些不变量解释为图的计数。它扩展到更一般的$(n+2)$-流形中的长结点,称为并行化渐近同调$\mathbb R^{n+2}$,并提供这些结点的不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信