Adaptive kernel principal components tracking

Toshihisa Tanaka, Y. Washizawa, A. Kuh
{"title":"Adaptive kernel principal components tracking","authors":"Toshihisa Tanaka, Y. Washizawa, A. Kuh","doi":"10.1109/ICASSP.2012.6288276","DOIUrl":null,"url":null,"abstract":"Adaptive online algorithms for simultaneously extracting nonlinear eigenvectors of kernel principal component analysis (KPCA) are developed. KPCA needs all the observed samples to represent basis functions, and the same scale of eigenvalue problem as the number of samples should be solved. This paper reformulates KPCA and deduces an expression in the Euclidean space, where an algorithm for tracking generalized eigenvectors is applicable. The developed algorithm here is least mean squares (LMS)-type and recursive least squares (RLS)-type. Numerical example is then illustrated to support the analysis.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Adaptive online algorithms for simultaneously extracting nonlinear eigenvectors of kernel principal component analysis (KPCA) are developed. KPCA needs all the observed samples to represent basis functions, and the same scale of eigenvalue problem as the number of samples should be solved. This paper reformulates KPCA and deduces an expression in the Euclidean space, where an algorithm for tracking generalized eigenvectors is applicable. The developed algorithm here is least mean squares (LMS)-type and recursive least squares (RLS)-type. Numerical example is then illustrated to support the analysis.
自适应核主成分跟踪
提出了核主成分分析(KPCA)非线性特征向量同时提取的自适应在线算法。KPCA需要所有的观测样本来表示基函数,需要解决与样本数量相同的特征值尺度问题。本文对KPCA进行了重新表述,并推导出欧几里德空间中的表达式,在欧几里德空间中,广义特征向量的跟踪算法是适用的。本文开发的算法是最小均二乘(LMS)型和递推最小二乘(RLS)型。最后给出了数值算例来支持分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信