Performance Improvement of GPS GDOP Approximation Using Recurrent Wavelet Neural Network

S. Tafazoli, M. Mosavi
{"title":"Performance Improvement of GPS GDOP Approximation Using Recurrent Wavelet Neural Network","authors":"S. Tafazoli, M. Mosavi","doi":"10.4236/jgis.2011.34029","DOIUrl":null,"url":null,"abstract":"One of the most important factors affecting the precision of the performance of a GPS receiver is the relative positioning of satellites to each other. Therefore, it is essential to choose appropriate accessible satellites utilized in the calculation of GPS positions. Optimal subsets of satellites are determined using the least value of their Geometric Dilution of Precision (GDOP). The most correct method of calculating GPS GDOP uses inverse matrix for all combinations and selecting the lowest ones. However, the inverse matrix method, especially when there are so many satellites, imposes a huge calculation load on the processor of the GPS navigator. In this paper, the rapid and precise calculation of GPS GDOP based on Recurrent Wavelet Neural Network (RWNN) has been introduced for selecting an optimal subset of satellites. The method of NNs provides a realistic calculation approach to determine GPS GDOP without any need to calculate inverse matrix.","PeriodicalId":93313,"journal":{"name":"Journal of geographic information system","volume":"42 1 1","pages":"318-322"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of geographic information system","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jgis.2011.34029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

One of the most important factors affecting the precision of the performance of a GPS receiver is the relative positioning of satellites to each other. Therefore, it is essential to choose appropriate accessible satellites utilized in the calculation of GPS positions. Optimal subsets of satellites are determined using the least value of their Geometric Dilution of Precision (GDOP). The most correct method of calculating GPS GDOP uses inverse matrix for all combinations and selecting the lowest ones. However, the inverse matrix method, especially when there are so many satellites, imposes a huge calculation load on the processor of the GPS navigator. In this paper, the rapid and precise calculation of GPS GDOP based on Recurrent Wavelet Neural Network (RWNN) has been introduced for selecting an optimal subset of satellites. The method of NNs provides a realistic calculation approach to determine GPS GDOP without any need to calculate inverse matrix.
基于循环小波神经网络的GPS GDOP逼近性能改进
影响GPS接收机性能精度的最重要因素之一是卫星之间的相对定位。因此,在GPS定位计算中选择合适的可接近卫星是至关重要的。利用卫星几何精度稀释(GDOP)的最小值确定卫星的最优子集。计算GPS GDOP最正确的方法是对所有组合进行逆矩阵,并选择最小的组合。然而,逆矩阵法对GPS导航仪的处理器造成了巨大的计算负荷,特别是在卫星数量众多的情况下。本文介绍了基于循环小波神经网络(RWNN)的GPS GDOP快速精确计算方法,以选择最优的卫星子集。神经网络方法为确定GPS GDOP提供了一种不需要计算逆矩阵的现实计算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信