Adaptive Beamforming Based on Interference Covariance Matrix Estimation

Yujie Gu, Yimin D. Zhang
{"title":"Adaptive Beamforming Based on Interference Covariance Matrix Estimation","authors":"Yujie Gu, Yimin D. Zhang","doi":"10.1109/IEEECONF44664.2019.9048699","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust adaptive beam-forming algorithm, where the interference-plus-noise covariance matrix is estimated by identifying and removing the desired signal component from the sample covariance matrix. For this purpose, we construct a desired signal subspace and its orthogonal subspace to identify the eigenvector of the sample covariance matrix corresponding to the desired signal. The adaptive beam-former is then designed using the estimated interference-plus-noise covariance matrix and the identified signal eigenvector. Because both are independent of the knowledge of the array geometry, the proposed adaptive beamformer is robust to array model mismatch. Simulation results demonstrate the effectiveness of the proposed robust adaptive beamforming algorithm.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"17 1","pages":"619-623"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we propose a robust adaptive beam-forming algorithm, where the interference-plus-noise covariance matrix is estimated by identifying and removing the desired signal component from the sample covariance matrix. For this purpose, we construct a desired signal subspace and its orthogonal subspace to identify the eigenvector of the sample covariance matrix corresponding to the desired signal. The adaptive beam-former is then designed using the estimated interference-plus-noise covariance matrix and the identified signal eigenvector. Because both are independent of the knowledge of the array geometry, the proposed adaptive beamformer is robust to array model mismatch. Simulation results demonstrate the effectiveness of the proposed robust adaptive beamforming algorithm.
基于干扰协方差矩阵估计的自适应波束形成
在本文中,我们提出了一种鲁棒自适应波束形成算法,该算法通过从样本协方差矩阵中识别和去除所需的信号分量来估计干扰加噪声协方差矩阵。为此,我们构造了一个期望信号子空间及其正交子空间来识别与期望信号对应的样本协方差矩阵的特征向量。然后利用估计的干扰加噪声协方差矩阵和识别的信号特征向量设计自适应波束形成器。由于这两种波束形成器都不依赖于阵列的几何知识,因此所提出的自适应波束形成器对阵列模型失配具有较强的鲁棒性。仿真结果验证了所提鲁棒自适应波束形成算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信