(Dis)connectedness of nonlocal minimal surfaces in a cylinder and a stickiness property

S. Dipierro, F. Onoue, E. Valdinoci
{"title":"(Dis)connectedness of nonlocal minimal surfaces in a cylinder and a stickiness property","authors":"S. Dipierro, F. Onoue, E. Valdinoci","doi":"10.1090/proc/15796","DOIUrl":null,"url":null,"abstract":"We consider nonlocal minimal surfaces in a cylinder with prescribed datum given by the complement of a slab. We show that when the width of the slab is large the minimizers are disconnected and when the width of the slab is small the minimizers are connected. This feature is in agreement with the classical case of the minimal surfaces. \nNevertheless, we show that when the width of the slab is large the minimizers are not flat discs, as it happens in the classical setting, and, in particular, in dimension $2$ we provide a quantitative bound on the stickiness property exhibited by the minimizers. \nMoreover, differently from the classical case, we show that when the width of the slab is small then the minimizers completely adhere to the side of the cylinder, thus providing a further example of stickiness phenomenon.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We consider nonlocal minimal surfaces in a cylinder with prescribed datum given by the complement of a slab. We show that when the width of the slab is large the minimizers are disconnected and when the width of the slab is small the minimizers are connected. This feature is in agreement with the classical case of the minimal surfaces. Nevertheless, we show that when the width of the slab is large the minimizers are not flat discs, as it happens in the classical setting, and, in particular, in dimension $2$ we provide a quantitative bound on the stickiness property exhibited by the minimizers. Moreover, differently from the classical case, we show that when the width of the slab is small then the minimizers completely adhere to the side of the cylinder, thus providing a further example of stickiness phenomenon.
(1)圆柱非局部最小曲面的非连通性及粘滞性
我们考虑圆柱体上的非局部极小曲面,该曲面的给定基准面由板的补边给出。我们表明,当板的宽度较大时,最小化器是断开的,当板的宽度较小时,最小化器是连接的。这一特征与最小曲面的经典情况是一致的。然而,我们表明,当板的宽度较大时,最小值不是平盘,就像在经典设置中发生的那样,特别是在维度$2$中,我们提供了最小值所表现出的粘性特性的定量界限。此外,与经典情况不同,我们表明,当板的宽度很小时,最小化器完全粘附在圆柱体的侧面,从而提供了粘滞现象的进一步示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信