PABAU: Privacy Analysis of Biometric API Usage

Feiyang Tang
{"title":"PABAU: Privacy Analysis of Biometric API Usage","authors":"Feiyang Tang","doi":"10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00327","DOIUrl":null,"url":null,"abstract":"Biometric data privacy is becoming a major concern for many organizations in the age of big data, particularly in the ICT sector, because it may be easily exploited in apps. Most apps utilize biometrics by accessing common application programming interfaces (APIs); hence, we aim to categorize their usage. The categorization based on behavior may be closely correlated with the sensitive processing of a user’s biometric data, hence highlighting crucial biometric data privacy assessment concerns. We propose PABAU, Privacy Analysis of Biometric API Usage. PABAU learns semantic features of methods in biometric APIs and uses them to detect and categorize the usage of biometric API implementation in the software according to their privacy-related behaviors. This technique bridges the communication and background knowledge gap between technical and non-technical individuals in organizations by providing an automated method for both parties to acquire a rapid understanding of the essential behaviors of biometric API in apps, as well as future support to data protection officers (DPO) with legal documentation, such as conducting a Data Protection Impact Assessment (DPIA).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biometric data privacy is becoming a major concern for many organizations in the age of big data, particularly in the ICT sector, because it may be easily exploited in apps. Most apps utilize biometrics by accessing common application programming interfaces (APIs); hence, we aim to categorize their usage. The categorization based on behavior may be closely correlated with the sensitive processing of a user’s biometric data, hence highlighting crucial biometric data privacy assessment concerns. We propose PABAU, Privacy Analysis of Biometric API Usage. PABAU learns semantic features of methods in biometric APIs and uses them to detect and categorize the usage of biometric API implementation in the software according to their privacy-related behaviors. This technique bridges the communication and background knowledge gap between technical and non-technical individuals in organizations by providing an automated method for both parties to acquire a rapid understanding of the essential behaviors of biometric API in apps, as well as future support to data protection officers (DPO) with legal documentation, such as conducting a Data Protection Impact Assessment (DPIA).
分享
查看原文
生物识别API使用的隐私分析
在大数据时代,生物识别数据隐私正成为许多组织的主要关注点,尤其是在信息通信技术领域,因为它可能很容易被应用程序利用。大多数应用程序通过访问通用应用程序编程接口(api)来利用生物识别技术;因此,我们的目标是对它们的用法进行分类。基于行为的分类可能与用户生物特征数据的敏感处理密切相关,因此突出了关键的生物特征数据隐私评估问题。我们提出了PABAU,生物识别API使用的隐私分析。PABAU学习生物识别API中方法的语义特征,并根据其隐私相关行为对软件中生物识别API实现的使用情况进行检测和分类。这项技术通过为双方提供一种自动化的方法来快速了解应用程序中生物识别API的基本行为,以及为数据保护官(DPO)提供法律文件的未来支持,例如进行数据保护影响评估(DPIA),从而弥合了组织中技术人员和非技术人员之间的沟通和背景知识差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信