Charge-exchange dipole excitations in deformed nuclei

Kenichi Yoshida
{"title":"Charge-exchange dipole excitations in deformed nuclei","authors":"Kenichi Yoshida","doi":"10.1103/physrevc.102.054336","DOIUrl":null,"url":null,"abstract":"Background: The electric giant-dipole resonance (GDR) is the most established collective vibrational mode of excitation. A charge-exchange analog, however, has been poorly studied in comparison with the spin (magnetic) dipole resonance (SDR). Purpose: I investigate the role of deformation on the charge-exchange dipole excitations and explore the generic features as an isovector mode of excitation. Methods: The nuclear energy-density functional method is employed for calculating the response functions based on the Skyrme--Kohn--Sham--Bogoliubov method and the proton-neuton quasiparticle-random-phase approximation. Results: The deformation splitting into $K=0$ and $K=\\pm 1$ components occurs in the charge-changing channels and is proportional to the magnitude of deformation as is well known for the GDR. For the SDR, however, a simple assertion based on geometry of a nucleus cannot be applied for explaining the vibrational frequencies of each $K$-component. A qualitative argument on the strength distributions for each component is given based on the non-energy-weighted sum rules taking nuclear deformation into account. The concentration of the electric dipole strengths in low energy and below the giant resonance is found in neutron-rich unstable nuclei. Conclusions: The deformation splitting occurs generically for the charge-exchange dipole excitions as in the neutral channel. The analog pygmy dipole resonance can emerge in deformed neutron-rich nuclei as well as in spherical systems.","PeriodicalId":8463,"journal":{"name":"arXiv: Nuclear Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Nuclear Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevc.102.054336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Background: The electric giant-dipole resonance (GDR) is the most established collective vibrational mode of excitation. A charge-exchange analog, however, has been poorly studied in comparison with the spin (magnetic) dipole resonance (SDR). Purpose: I investigate the role of deformation on the charge-exchange dipole excitations and explore the generic features as an isovector mode of excitation. Methods: The nuclear energy-density functional method is employed for calculating the response functions based on the Skyrme--Kohn--Sham--Bogoliubov method and the proton-neuton quasiparticle-random-phase approximation. Results: The deformation splitting into $K=0$ and $K=\pm 1$ components occurs in the charge-changing channels and is proportional to the magnitude of deformation as is well known for the GDR. For the SDR, however, a simple assertion based on geometry of a nucleus cannot be applied for explaining the vibrational frequencies of each $K$-component. A qualitative argument on the strength distributions for each component is given based on the non-energy-weighted sum rules taking nuclear deformation into account. The concentration of the electric dipole strengths in low energy and below the giant resonance is found in neutron-rich unstable nuclei. Conclusions: The deformation splitting occurs generically for the charge-exchange dipole excitions as in the neutral channel. The analog pygmy dipole resonance can emerge in deformed neutron-rich nuclei as well as in spherical systems.
变形核中的电荷交换偶极激发
背景:电巨偶极子共振(GDR)是最成熟的集体振动激励模式。然而,与自旋(磁)偶极子共振(SDR)相比,电荷交换类似物的研究很少。目的:研究变形对电荷交换偶极子激发的作用,并探索其作为等矢量激发模式的一般特征。方法:采用基于Skyrme- Kohn- Sham- Bogoliubov方法和质子-中子准粒子-随机相近似的核能密度泛函方法计算响应函数。结果:变形分裂为$K=0$和$K=\pm 1$分量发生在电荷变化通道中,并且与变形的大小成正比,这是众所周知的GDR。然而,对于SDR来说,基于核几何形状的简单断言不能用于解释每个K分量的振动频率。基于考虑核变形的非能量加权和规则,定性地讨论了各构件的强度分布。在富含中子的不稳定核中发现了低能量和低于巨共振的电偶极子强度的集中。结论:变形分裂一般发生在电荷交换偶极子激发和中性通道中。类似的侏儒偶极子共振可以出现在变形的富中子核中,也可以出现在球形系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信