Cantilever beam microgyroscope based on Frequency modulation

David Effa, E. Abdel-Rahman, M. Yavuz
{"title":"Cantilever beam microgyroscope based on Frequency modulation","authors":"David Effa, E. Abdel-Rahman, M. Yavuz","doi":"10.1109/AIM.2013.6584199","DOIUrl":null,"url":null,"abstract":"This paper reports on-going research progress towards the development of an innovative frequency modulation MEMS gyroscope. The microgyroscope design includes a cantilever beam with a proof mass at its free end coupled electrostatically with two fixed electrodes. The beam is designed with silicon nitride and a layer of electrode material (Au). The microgyroscope undergoes coupled flexural vibrations in two orthogonal directions when subjected to base rotation around the beam's longitudinal axis. The rotation rate is measured by detecting the shift in the frequencies of the two closely spaced global vibration modes. A modeling framework is presented here for the development of the microgyroscope's frequency equation. The governing equations are derived using the Extended Hamilton's Principle and solved numerically to incorporate the nonlinear behavior. Currently, the device is in the process of fabrication using Silicon on Insulator (SOI) wafer using a micromachining process, including Deep Reactive Ion Etching.","PeriodicalId":73326,"journal":{"name":"IEEE/ASME International Conference on Advanced Intelligent Mechatronics : [proceedings]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics","volume":"13 1","pages":"844-849"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ASME International Conference on Advanced Intelligent Mechatronics : [proceedings]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIM.2013.6584199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper reports on-going research progress towards the development of an innovative frequency modulation MEMS gyroscope. The microgyroscope design includes a cantilever beam with a proof mass at its free end coupled electrostatically with two fixed electrodes. The beam is designed with silicon nitride and a layer of electrode material (Au). The microgyroscope undergoes coupled flexural vibrations in two orthogonal directions when subjected to base rotation around the beam's longitudinal axis. The rotation rate is measured by detecting the shift in the frequencies of the two closely spaced global vibration modes. A modeling framework is presented here for the development of the microgyroscope's frequency equation. The governing equations are derived using the Extended Hamilton's Principle and solved numerically to incorporate the nonlinear behavior. Currently, the device is in the process of fabrication using Silicon on Insulator (SOI) wafer using a micromachining process, including Deep Reactive Ion Etching.
基于调频的悬臂梁微陀螺仪
本文报道了一种新型调频微机电系统陀螺仪的研究进展。微陀螺仪设计包括一个悬臂梁,在其自由端有一个证明质量与两个固定电极静电耦合。该光束是用氮化硅和一层电极材料(Au)设计的。微陀螺仪在绕光束纵轴转动时,在两个正交方向上发生耦合弯曲振动。旋转速率是通过检测两个紧密间隔的全局振动模式的频率变化来测量的。本文给出了微陀螺仪频率方程的建模框架。利用扩展哈密顿原理推导了控制方程,并对其进行了数值求解,以考虑其非线性特性。目前,该器件正在使用绝缘体上硅(SOI)晶圆,采用包括深度反应离子蚀刻在内的微加工工艺制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信