{"title":"Towards a better similarity algorithm for host-based intrusion detection system","authors":"Lounis Ouarda, Malika Bourenane, Bouderah Brahim","doi":"10.1515/jisys-2022-0259","DOIUrl":null,"url":null,"abstract":"Abstract An intrusion detection system plays an essential role in system security by discovering and preventing malicious activities. Over the past few years, several research projects on host-based intrusion detection systems (HIDSs) have been carried out utilizing the Australian Defense Force Academy Linux Dataset (ADFA-LD). These HIDS have also been subjected to various algorithm analyses to enhance their detection capability for high accuracy and low false alarms. However, less attention is paid to the actual implementation of real-time HIDS. Our principal objective in this study is to create a performant real-time HIDS. We propose a new model, “Better Similarity Algorithm for Host-based Intrusion Detection System” (BSA-HIDS), using the same dataset ADFA-LD. The proposed model uses three classifications to represent the attack folder according to certain criteria, the entire system call sequence is used. Furthermore, this work uses textual distance and compares five algorithms like Levenshtein, Jaro–Winkler, Jaccard, Hamming, and Dice coefficient, to classify the system call trace as attack or non-attack based on the notions of interclass decoupling and intra-class coupling. The model can detect zero-day attacks because of the threshold definition. The experimental results show a good detection performance in real-time for Levenshtein/Jaro–Winkler algorithms, 99–94% in detection rate, 2–5% in false alarm rate, and 3,300–720 s in running time, respectively.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"20 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract An intrusion detection system plays an essential role in system security by discovering and preventing malicious activities. Over the past few years, several research projects on host-based intrusion detection systems (HIDSs) have been carried out utilizing the Australian Defense Force Academy Linux Dataset (ADFA-LD). These HIDS have also been subjected to various algorithm analyses to enhance their detection capability for high accuracy and low false alarms. However, less attention is paid to the actual implementation of real-time HIDS. Our principal objective in this study is to create a performant real-time HIDS. We propose a new model, “Better Similarity Algorithm for Host-based Intrusion Detection System” (BSA-HIDS), using the same dataset ADFA-LD. The proposed model uses three classifications to represent the attack folder according to certain criteria, the entire system call sequence is used. Furthermore, this work uses textual distance and compares five algorithms like Levenshtein, Jaro–Winkler, Jaccard, Hamming, and Dice coefficient, to classify the system call trace as attack or non-attack based on the notions of interclass decoupling and intra-class coupling. The model can detect zero-day attacks because of the threshold definition. The experimental results show a good detection performance in real-time for Levenshtein/Jaro–Winkler algorithms, 99–94% in detection rate, 2–5% in false alarm rate, and 3,300–720 s in running time, respectively.
期刊介绍:
The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.