Extended Nullstellensatz proof systems

J. Krajícek
{"title":"Extended Nullstellensatz proof systems","authors":"J. Krajícek","doi":"10.48550/arXiv.2301.10617","DOIUrl":null,"url":null,"abstract":"For a finite set $\\cal F$ of polynomials over fixed finite prime field of size $p$ containing all polynomials $x^2 - x$ a Nullstellensatz proof of the unsolvability of the system $$ f = 0\\ ,\\ \\mbox{ all } f \\in {\\cal F} $$ in the field is a linear combination $\\sum_{f \\in {\\cal F}} \\ h_f \\cdot f$ that equals to $1$ in the ring of polynomails. The measure of complexity of such a proof is its degree: $\\max_f deg(h_f f)$. We study the problem to establish degree lower bounds for some {\\em extended} NS proof systems: these systems prove the unsolvability of $\\cal F$ by proving the unsolvability of a bigger set ${\\cal F}\\cup {\\cal E}$, where set $\\cal E$ may use new variables $r$ and contains all polynomials $r^p - r$, and satisfies the following soundness condition: -- - Any $0,1$-assignment $\\overline a$ to variables $\\overline x$ can be appended by an assignment $\\overline b$ to variables $\\overline r$ such that for all $g \\in {\\cal E}$ it holds that $g(\\overline a, \\overline b) = 0$. We define a notion of pseudo-solutions of $\\cal F$ and prove that the existence of pseudo-solutions with suitable parameters implies lower bounds for two extended NS proof systems ENS and UENS defined in Buss et al. (1996/97). Further we give a combinatorial example of $\\cal F$ and candidate pseudo-solutions based on the pigeonhole principle.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"394 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.10617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a finite set $\cal F$ of polynomials over fixed finite prime field of size $p$ containing all polynomials $x^2 - x$ a Nullstellensatz proof of the unsolvability of the system $$ f = 0\ ,\ \mbox{ all } f \in {\cal F} $$ in the field is a linear combination $\sum_{f \in {\cal F}} \ h_f \cdot f$ that equals to $1$ in the ring of polynomails. The measure of complexity of such a proof is its degree: $\max_f deg(h_f f)$. We study the problem to establish degree lower bounds for some {\em extended} NS proof systems: these systems prove the unsolvability of $\cal F$ by proving the unsolvability of a bigger set ${\cal F}\cup {\cal E}$, where set $\cal E$ may use new variables $r$ and contains all polynomials $r^p - r$, and satisfies the following soundness condition: -- - Any $0,1$-assignment $\overline a$ to variables $\overline x$ can be appended by an assignment $\overline b$ to variables $\overline r$ such that for all $g \in {\cal E}$ it holds that $g(\overline a, \overline b) = 0$. We define a notion of pseudo-solutions of $\cal F$ and prove that the existence of pseudo-solutions with suitable parameters implies lower bounds for two extended NS proof systems ENS and UENS defined in Buss et al. (1996/97). Further we give a combinatorial example of $\cal F$ and candidate pseudo-solutions based on the pigeonhole principle.
扩展Nullstellensatz证明系统
对于大小为$p$的固定有限素数域上的多项式的有限集合$\cal F$,其中包含所有多项式$x^2 - x$,一个Nullstellensatz证明系统$$ f = 0\ ,\ \mbox{ all } f \in {\cal F} $$在该域中的不可解性是一个线性组合$\sum_{f \in {\cal F}} \ h_f \cdot f$,等于多项式环中的$1$。衡量这种证明的复杂程度就是它的程度:$\max_f deg(h_f f)$。我们研究了一些{\em扩展}NS证明系统的次下界的建立问题,这些系统通过证明一个更大集合${\cal F}\cup {\cal E}$的不可解性来证明$\cal F$的不可解性,其中集合$\cal E$可以使用新的变量$r$并且包含所有多项式$r^p - r$,并且满足以下稳健性条件:对变量$\overline x$的任何$0,1$赋值$\overline a$都可以通过对变量$\overline r$的赋值$\overline b$来附加,这样对于所有$g \in {\cal E}$都持有$g(\overline a, \overline b) = 0$。我们定义了$\cal F$伪解的概念,并证明了Buss et al.(1996/97)定义的两个扩展NS证明系统ENS和UENS具有合适参数的伪解的存在性意味着下界。进一步给出了一个基于鸽子洞原理的$\cal F$和候选伪解的组合例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信