Combining event- and variable-centred approaches to institution-facing learning analytics at the unit of study level

Nick Kelly, M. Montenegro, C. Gonzalez, Paula Clasing, Augusto Sandoval, Magdalena Jara, Elvira Saurina, R. Alarcón
{"title":"Combining event- and variable-centred approaches to institution-facing learning analytics at the unit of study level","authors":"Nick Kelly, M. Montenegro, C. Gonzalez, Paula Clasing, Augusto Sandoval, Magdalena Jara, Elvira Saurina, R. Alarcón","doi":"10.1108/IJILT-07-2016-0022","DOIUrl":null,"url":null,"abstract":"Purpose - The paper demonstrates the utility of combining event-centred and variable-centred approaches when analysing big data for higher education institutions. It uses a large, university-wide dataset to demonstrate the methodology for this analysis by case study. It presents empirical findings about relationships between student behaviours in a learning management system and the learning outcomes of students, and further explores these findings using process modelling techniques. \n \n Design/methodology/approach - The paper describes a two-year study in a Chilean university, using big data from a learning management system and from the central university database of student results and demographics. Descriptive statistics of LMS use in different years presents an overall picture of student use of the system. Process mining is described as an event-centred approach to give a deeper level of understanding of these findings. \n \n Findings - The study found evidence to support the idea that instructors do not strongly influence student use of an LMS. It replicates existing studies to show that higher performing students use an LMS differently to lower performing students. \n \n Research limitations/implications - The study is limited by its institutional context, its two-year time frame, and its exploratory mode of investigation to create a case study. \n \n Practical implications - The paper is useful for institutions in developing methodology for using big data from a learning management system to make use of event-centred approaches. \n \n Originality/value - The paper is valuable in replicating and extending recent studies using event-centred approaches to analysis of learning data. The study here is a larger scale than existing studies (using a university-wide dataset), in a novel context (Latin America), that provides a clear description for how and why the methodology should inform institutional approaches.","PeriodicalId":21486,"journal":{"name":"Science & Engineering Faculty","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & Engineering Faculty","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/IJILT-07-2016-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Purpose - The paper demonstrates the utility of combining event-centred and variable-centred approaches when analysing big data for higher education institutions. It uses a large, university-wide dataset to demonstrate the methodology for this analysis by case study. It presents empirical findings about relationships between student behaviours in a learning management system and the learning outcomes of students, and further explores these findings using process modelling techniques. Design/methodology/approach - The paper describes a two-year study in a Chilean university, using big data from a learning management system and from the central university database of student results and demographics. Descriptive statistics of LMS use in different years presents an overall picture of student use of the system. Process mining is described as an event-centred approach to give a deeper level of understanding of these findings. Findings - The study found evidence to support the idea that instructors do not strongly influence student use of an LMS. It replicates existing studies to show that higher performing students use an LMS differently to lower performing students. Research limitations/implications - The study is limited by its institutional context, its two-year time frame, and its exploratory mode of investigation to create a case study. Practical implications - The paper is useful for institutions in developing methodology for using big data from a learning management system to make use of event-centred approaches. Originality/value - The paper is valuable in replicating and extending recent studies using event-centred approaches to analysis of learning data. The study here is a larger scale than existing studies (using a university-wide dataset), in a novel context (Latin America), that provides a clear description for how and why the methodology should inform institutional approaches.
结合事件和变量为中心的方法,面向机构的学习分析在研究水平的单位
目的:本文展示了在分析高等教育机构大数据时,以事件为中心和以变量为中心的方法相结合的效用。它使用了一个大型的、全校范围的数据集,通过案例研究来展示这种分析的方法。它提出了关于学习管理系统中学生行为与学生学习成果之间关系的实证研究结果,并使用过程建模技术进一步探讨了这些发现。设计/方法/方法-本文描述了在智利一所大学进行的为期两年的研究,使用了来自学习管理系统和中央大学学生成绩和人口统计数据库的大数据。对不同年份LMS使用情况的描述性统计显示了学生使用系统的总体情况。过程挖掘被描述为一种以事件为中心的方法,可以更深入地理解这些发现。研究发现——研究发现有证据支持教师对学生使用LMS没有强烈影响的观点。它重复了现有的研究,表明表现较好的学生与表现较差的学生使用LMS的方式不同。研究局限性/启示-本研究受到其机构背景、两年时间框架和为创建案例研究而采用的探索性调查模式的限制。实际意义-本文对机构开发利用学习管理系统大数据的方法,以利用以事件为中心的方法非常有用。原创性/价值-这篇论文在复制和扩展最近使用事件为中心的方法来分析学习数据的研究方面很有价值。这里的研究比现有的研究规模更大(使用大学范围的数据集),在一个新的背景下(拉丁美洲),它提供了一个清晰的描述,说明该方法如何以及为什么应该为机构方法提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信