User recommendation with tensor factorization in social networks

Zhenlei Yan, Jie Zhou
{"title":"User recommendation with tensor factorization in social networks","authors":"Zhenlei Yan, Jie Zhou","doi":"10.1109/ICASSP.2012.6288758","DOIUrl":null,"url":null,"abstract":"The rapid growth of population in social networks has posed a challenge to existing systems for recommending to a user new friends having similar interests. In this paper, we address this user recommendation problem in social networks by proposing a novel framework which utilizes users' tagging information with tensor factorization. This work brings two major contributions: (1) A tensor model is proposed to capture the potential association among user, user's interests and friends in social tagging systems; (2) A novel approach is proposed to recommend new friends based on this model. The experiments on a real-world dataset crawled from Last.fm show that the proposed method outperforms other state-of-the-art approaches.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The rapid growth of population in social networks has posed a challenge to existing systems for recommending to a user new friends having similar interests. In this paper, we address this user recommendation problem in social networks by proposing a novel framework which utilizes users' tagging information with tensor factorization. This work brings two major contributions: (1) A tensor model is proposed to capture the potential association among user, user's interests and friends in social tagging systems; (2) A novel approach is proposed to recommend new friends based on this model. The experiments on a real-world dataset crawled from Last.fm show that the proposed method outperforms other state-of-the-art approaches.
基于张量分解的社交网络用户推荐
社交网络人口的快速增长对现有的向用户推荐有相似兴趣的新朋友的系统提出了挑战。在本文中,我们提出了一个利用用户标签信息和张量分解的新框架来解决社交网络中的用户推荐问题。该工作带来了两个主要贡献:(1)提出了一个张量模型来捕捉社交标签系统中用户、用户兴趣和朋友之间的潜在关联;(2)在此模型的基础上,提出了一种新的好友推荐方法。在真实世界数据集上的实验是从Last抓取的。FM表明,所提出的方法优于其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信