Deep Multi-Model Fusion for Single-Image Dehazing

Zijun Deng, Lei Zhu, Xiaowei Hu, Chi-Wing Fu, Xuemiao Xu, Qing Zhang, J. Qin, P. Heng
{"title":"Deep Multi-Model Fusion for Single-Image Dehazing","authors":"Zijun Deng, Lei Zhu, Xiaowei Hu, Chi-Wing Fu, Xuemiao Xu, Qing Zhang, J. Qin, P. Heng","doi":"10.1109/ICCV.2019.00254","DOIUrl":null,"url":null,"abstract":"This paper presents a deep multi-model fusion network to attentively integrate multiple models to separate layers and boost the performance in single-image dehazing. To do so, we first formulate the attentional feature integration module to maximize the integration of the convolutional neural network (CNN) features at different CNN layers and generate the attentional multi-level integrated features (AMLIF). Then, from the AMLIF, we further predict a haze-free result for an atmospheric scattering model, as well as for four haze-layer separation models, and then fuse the results together to produce the final haze-free image. To evaluate the effectiveness of our method, we compare our network with several state-of-the-art methods on two widely-used dehazing benchmark datasets, as well as on two sets of real-world hazy images. Experimental results demonstrate clear quantitative and qualitative improvements of our method over the state-of-the-arts.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"4 1","pages":"2453-2462"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

Abstract

This paper presents a deep multi-model fusion network to attentively integrate multiple models to separate layers and boost the performance in single-image dehazing. To do so, we first formulate the attentional feature integration module to maximize the integration of the convolutional neural network (CNN) features at different CNN layers and generate the attentional multi-level integrated features (AMLIF). Then, from the AMLIF, we further predict a haze-free result for an atmospheric scattering model, as well as for four haze-layer separation models, and then fuse the results together to produce the final haze-free image. To evaluate the effectiveness of our method, we compare our network with several state-of-the-art methods on two widely-used dehazing benchmark datasets, as well as on two sets of real-world hazy images. Experimental results demonstrate clear quantitative and qualitative improvements of our method over the state-of-the-arts.
单幅图像去雾的深度多模型融合
本文提出了一种深度多模型融合网络,将多个模型集中在一起进行分层,提高了单幅图像去雾的性能。为此,我们首先制定了注意力特征集成模块,以最大限度地集成卷积神经网络(CNN)在不同CNN层的特征,并生成注意力多层次集成特征(AMLIF)。然后,利用AMLIF进一步预测大气散射模型和四种雾层分离模型的无雾结果,然后将结果融合在一起,得到最终的无雾图像。为了评估我们方法的有效性,我们将我们的网络与几种最先进的方法在两个广泛使用的去雾基准数据集以及两组真实的朦胧图像上进行了比较。实验结果表明,我们的方法在定量和定性上都有了明显的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信