Sergio Peralta, Jhon Córdova, Cesar Celis, D. Maza
{"title":"Parallel Domain Decomposition of a FEM-based Tool for Numerical Modelling Mineral Slurry-like Flows","authors":"Sergio Peralta, Jhon Córdova, Cesar Celis, D. Maza","doi":"10.1080/10618562.2022.2107201","DOIUrl":null,"url":null,"abstract":"The main parallelisation related features of a computational tool based on the finite element method (FEM) for the numerical modelling of mineral-slurry like flows are described in this work. In particular, both the domain decomposition method (DDM) and the processes communication strategy employed are discussed in detail. The DD algorithm is based on the iterative update of the boundary conditions imposed on the interfaces between subdomains, the so-called transmission conditions. Due to its versatility in several parallel architectures, the message-passing standard used here is the message passing interface (MPI) one. Since mineral-slurries rheology may change according to the prevailing local flow conditions, Newtonian and non-Newtonian viscous fluids are considered in this work. Indeed, both Newtonian and non-Newtonian laminar flows are numerically studied in two well-known canonical configurations usually found in mineral-slurry transport. The main results show that the parallel FEM based tool is capable of carrying out high-fidelity numerical simulations of mineral-slurry like flows. Finally, in all numerical simulations performed, relatively good speedups were obtained.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":"10 1","pages":"342 - 360"},"PeriodicalIF":1.1000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10618562.2022.2107201","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The main parallelisation related features of a computational tool based on the finite element method (FEM) for the numerical modelling of mineral-slurry like flows are described in this work. In particular, both the domain decomposition method (DDM) and the processes communication strategy employed are discussed in detail. The DD algorithm is based on the iterative update of the boundary conditions imposed on the interfaces between subdomains, the so-called transmission conditions. Due to its versatility in several parallel architectures, the message-passing standard used here is the message passing interface (MPI) one. Since mineral-slurries rheology may change according to the prevailing local flow conditions, Newtonian and non-Newtonian viscous fluids are considered in this work. Indeed, both Newtonian and non-Newtonian laminar flows are numerically studied in two well-known canonical configurations usually found in mineral-slurry transport. The main results show that the parallel FEM based tool is capable of carrying out high-fidelity numerical simulations of mineral-slurry like flows. Finally, in all numerical simulations performed, relatively good speedups were obtained.
期刊介绍:
The International Journal of Computational Fluid Dynamics publishes innovative CFD research, both fundamental and applied, with applications in a wide variety of fields.
The Journal emphasizes accurate predictive tools for 3D flow analysis and design, and those promoting a deeper understanding of the physics of 3D fluid motion. Relevant and innovative practical and industrial 3D applications, as well as those of an interdisciplinary nature, are encouraged.