Separation Technology of Components of Waste Pharmaceutical Blisters

E. Miękoś, M. Zieliński, D. Sroczyński, A. Fenyk
{"title":"Separation Technology of Components of Waste Pharmaceutical Blisters","authors":"E. Miękoś, M. Zieliński, D. Sroczyński, A. Fenyk","doi":"10.2478/eces-2023-0034","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, the separation technology of components of waste pharmaceutical blisters and its adaptation to the industrial scale are described. It involved, among others, taking advantage of the phenomenon of difference in the density of the individual phases that were contained in the separation tank, i.e., the separating mixture, PVC plastics, and aluminium. As a result, the directions of movement of the separated blister components were opposite. All components of the separating mixture feature a similar surface tension (γ > 20 mN/m) which facilitates the penetration of the liquid between the blister component layers. After separation, the full-value products, i.e. polyvinyl chloride (PVC) and aluminium are obtained. The resulting products can be further processed and the entire technological process is a waste-free. PVC can be melted and processed into other products e.g. plastic components for the construction industry. Pure aluminium is a metal sought after and widely used in industry due to its low specific weight. An additional element supplementing the technology is the separation tank of our design in which the separation process of the blister components takes place. The advantage of the separation tank is that the separation process can be repeated many times with the same separating mixture until it is exhausted. Both separated blister components are directed to filtering followed by air drying without a mixing PVC plastic with aluminium.","PeriodicalId":11395,"journal":{"name":"Ecological Chemistry and Engineering S","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Chemistry and Engineering S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/eces-2023-0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, the separation technology of components of waste pharmaceutical blisters and its adaptation to the industrial scale are described. It involved, among others, taking advantage of the phenomenon of difference in the density of the individual phases that were contained in the separation tank, i.e., the separating mixture, PVC plastics, and aluminium. As a result, the directions of movement of the separated blister components were opposite. All components of the separating mixture feature a similar surface tension (γ > 20 mN/m) which facilitates the penetration of the liquid between the blister component layers. After separation, the full-value products, i.e. polyvinyl chloride (PVC) and aluminium are obtained. The resulting products can be further processed and the entire technological process is a waste-free. PVC can be melted and processed into other products e.g. plastic components for the construction industry. Pure aluminium is a metal sought after and widely used in industry due to its low specific weight. An additional element supplementing the technology is the separation tank of our design in which the separation process of the blister components takes place. The advantage of the separation tank is that the separation process can be repeated many times with the same separating mixture until it is exhausted. Both separated blister components are directed to filtering followed by air drying without a mixing PVC plastic with aluminium.
废药膏组分分离技术研究
摘要本文介绍了医药废旧泡剂的组分分离技术及其对工业规模的适应性。除其他外,它还涉及利用分离槽中包含的各个相的密度差异现象,即分离混合物,PVC塑料和铝。因此,分离的泡罩组分的运动方向是相反的。分离混合物的所有组分具有相似的表面张力(γ > 20 mN/m),这有利于液体在泡罩组分层之间的渗透。分离后,得到全价值产品,即聚氯乙烯(PVC)和铝。得到的产品可以进一步加工,整个工艺过程是零浪费的。PVC可以熔化并加工成其他产品,例如建筑行业的塑料部件。纯铝因其较低的比重而在工业上受到追捧和广泛应用。补充技术的另一个元素是我们设计的分离罐,其中泡罩组件的分离过程发生。分离槽的优点是可以用相同的分离混合物重复多次分离过程,直到耗尽为止。两种分离的吸塑组件都直接过滤,然后在没有混合PVC塑料和铝的情况下进行空气干燥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信