Effect of a modified nano clay and nano graphene on rheology, stability of water-in-oil emulsion, and filtration control ability of oil-based drilling fluids: a comparative experimental approach
{"title":"Effect of a modified nano clay and nano graphene on rheology, stability of water-in-oil emulsion, and filtration control ability of oil-based drilling fluids: a comparative experimental approach","authors":"Vahid Nooripoor, A. Hashemi","doi":"10.2516/ogst/2020032","DOIUrl":null,"url":null,"abstract":"During the past decade, researchers have used different Nano-Particles (NPs) due to their unique characteristics for improving formulation of Oil-Based Drilling Fluids (OBDFs). This study is the first research that investigates the effect of a Modified Nano Clay (MNC), namely CLOISITE 5 and non-functionalized Nano Graphene (NG) on rheology, electrical/emulsion stability, and filtration control ability, as the main properties of OBDFs. Initially, five concentrations of both NPs (0.25, 0.5, 1, 1.5, and 2 wt%) were added separately into an NP-free OBDF (the base fluid). Then, rheological properties and electrical stability of all prepared fluids were measured at three 90, 140, and 180 °F temperatures. Moreover, filtration test was carried out under 500 psi (3447 kPa) differential pressure and exposed to 300 °F temperature for all fluids. Since experimentally measured shear stresses followed well both Herschel Bulkley (shear-thinning) and Bingham Plastic models, effects of temperature and the NPs concentration on both model parameters are investigated more deeply in the paper. Activation energies calculated from Arrhenius model showed that MNC is more effective than NG on reducing the dependency of apparent and plastic viscosities of the base fluid on temperature. MNC, due to its amphiphilic structure, significantly stabilizes water-in-oil emulsion at all temperatures and concentrations, but NG with high electrical conductivity reduces the emulsion stability. The nanofluids containing 0.5 wt% MNC and 0.25 wt% NG which have respectively 32.6% and 43.5% fewer filtrate volumes than the base fluid, were considered as the optimal nanofluids from controlling filtration into formation aspect. Finally, MNC is applicable to enhance the formulation of the OBDF through supporting its commercial viscosifier, emulsifiers, and fluid loss control agent, but the negative effect of NG on emulsion stability limits its application.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":"61 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2020032","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 11
Abstract
During the past decade, researchers have used different Nano-Particles (NPs) due to their unique characteristics for improving formulation of Oil-Based Drilling Fluids (OBDFs). This study is the first research that investigates the effect of a Modified Nano Clay (MNC), namely CLOISITE 5 and non-functionalized Nano Graphene (NG) on rheology, electrical/emulsion stability, and filtration control ability, as the main properties of OBDFs. Initially, five concentrations of both NPs (0.25, 0.5, 1, 1.5, and 2 wt%) were added separately into an NP-free OBDF (the base fluid). Then, rheological properties and electrical stability of all prepared fluids were measured at three 90, 140, and 180 °F temperatures. Moreover, filtration test was carried out under 500 psi (3447 kPa) differential pressure and exposed to 300 °F temperature for all fluids. Since experimentally measured shear stresses followed well both Herschel Bulkley (shear-thinning) and Bingham Plastic models, effects of temperature and the NPs concentration on both model parameters are investigated more deeply in the paper. Activation energies calculated from Arrhenius model showed that MNC is more effective than NG on reducing the dependency of apparent and plastic viscosities of the base fluid on temperature. MNC, due to its amphiphilic structure, significantly stabilizes water-in-oil emulsion at all temperatures and concentrations, but NG with high electrical conductivity reduces the emulsion stability. The nanofluids containing 0.5 wt% MNC and 0.25 wt% NG which have respectively 32.6% and 43.5% fewer filtrate volumes than the base fluid, were considered as the optimal nanofluids from controlling filtration into formation aspect. Finally, MNC is applicable to enhance the formulation of the OBDF through supporting its commercial viscosifier, emulsifiers, and fluid loss control agent, but the negative effect of NG on emulsion stability limits its application.
期刊介绍:
OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition.
OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases.
The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month.
Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.