A new method for proving dominating uniqueness of graphs

Gee Choon Lau
{"title":"A new method for proving dominating uniqueness of graphs","authors":"Gee Choon Lau","doi":"10.1016/j.jaubas.2017.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>G</em> be a graph of order <em>n</em>. A subset <em>S</em> of <span><math><mrow><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math></span> is a dominating set of <em>G</em> if every vertex in <span><math><mrow><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>⧹</mo><mi>S</mi></mrow></math></span> is adjacent to at least one vertex of <em>S</em>. The domination polynomial of <em>G</em> is the polynomial <span><math><mrow><mi>D</mi><mo>(</mo><mi>G</mi><mtext>,</mtext><mi>x</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mi>γ</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msubsup><mi>d</mi><mo>(</mo><mi>G</mi><mtext>,</mtext><mi>i</mi><mo>)</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msup></mrow></math></span>, where <span><math><mrow><mi>d</mi><mo>(</mo><mi>G</mi><mtext>,</mtext><mi>i</mi><mo>)</mo></mrow></math></span> is the number of dominating sets of <em>G</em> of size <em>i</em>, and <span><math><mrow><mi>γ</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math></span> is the size of a smallest dominating set of <em>G</em>, called the domination number of <em>G</em>. We say two graphs <em>G</em> and <em>H</em> are <em>dominating equivalent</em> if <span><math><mrow><mi>D</mi><mo>(</mo><mi>G</mi><mtext>,</mtext><mi>x</mi><mo>)</mo><mo>=</mo><mi>D</mi><mo>(</mo><mi>H</mi><mtext>,</mtext><mi>x</mi><mo>)</mo></mrow></math></span>. A graph <em>G</em> is said to be <em>dominating unique</em>, or simply <span><math><mrow><mi>D</mi></mrow></math></span>-unique, if <span><math><mrow><mi>D</mi><mo>(</mo><mi>H</mi><mtext>,</mtext><mi>x</mi><mo>)</mo><mo>=</mo><mi>D</mi><mo>(</mo><mi>G</mi><mtext>,</mtext><mi>x</mi><mo>)</mo></mrow></math></span> implies that <span><math><mrow><mi>H</mi><mspace></mspace><mo>≅</mo><mspace></mspace><mi>G</mi></mrow></math></span>. The goal of this paper is to find a new approach to determine the dominating uniqueness of graphs. In this paper, we define a new graph polynomial, called star polynomial, and introduced an analogy notion of star uniqueness of graphs. As an application, if <em>G</em> is a graph without isolated vertices, we show that a graph <em>G</em> is star unique if and only if <span><math><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>‾</mo></mrow></mover><mi>∨</mi><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> is dominating unique for each <span><math><mrow><mi>m</mi><mspace></mspace><mo>⩾</mo><mspace></mspace><mn>0</mn></mrow></math></span>. As a by-product, the dominating uniqueness of many families of dense graphs is also determined.</p></div>","PeriodicalId":17232,"journal":{"name":"Journal of the Association of Arab Universities for Basic and Applied Sciences","volume":"24 ","pages":"Pages 292-299"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jaubas.2017.03.003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Association of Arab Universities for Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1815385217300160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a graph of order n. A subset S of V(G) is a dominating set of G if every vertex in V(G)S is adjacent to at least one vertex of S. The domination polynomial of G is the polynomial D(G,x)=i=γ(G)nd(G,i)xi, where d(G,i) is the number of dominating sets of G of size i, and γ(G) is the size of a smallest dominating set of G, called the domination number of G. We say two graphs G and H are dominating equivalent if D(G,x)=D(H,x). A graph G is said to be dominating unique, or simply D-unique, if D(H,x)=D(G,x) implies that HG. The goal of this paper is to find a new approach to determine the dominating uniqueness of graphs. In this paper, we define a new graph polynomial, called star polynomial, and introduced an analogy notion of star uniqueness of graphs. As an application, if G is a graph without isolated vertices, we show that a graph G is star unique if and only if GKm is dominating unique for each m0. As a by-product, the dominating uniqueness of many families of dense graphs is also determined.

一种证明图的支配唯一性的新方法
让图G是一个n。一个子集S V (G)是一组主导的G如果每个顶点V (G)⧹S是相邻的至少一个顶点的S G的统治多项式多项式D (G, x) =∑i =γ(G)和(G, i),其中D (G, i)是支配集G大小的我,和γ(G)是G的一个最小支配集的大小,称为统治的G .我们说两个图G和H控制等效如果D (G, x) = D (H (x)。如果D(H,x)=D(G,x)意味着H = G,则图G是支配唯一的,或者简称为D-唯一。本文的目的是寻找一种确定图的支配唯一性的新方法。本文定义了一种新的图多项式——星形多项式,并引入了图的星形唯一性的类比概念。作为一个应用,如果G是一个没有孤立顶点的图,我们证明一个图G是星形唯一的当且仅当G´∨Km对于每个m大于或等于0是主导唯一的。作为一个副产品,许多密集图族的支配唯一性也被确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信