{"title":"Preparation of high-efficiency anti-reflective oxide electrodes and their application in biomedical testing and thin-film lithium batteries","authors":"Kuan-Jiuh Lin","doi":"10.21820/23987073.2022.3.6","DOIUrl":null,"url":null,"abstract":"Nanomaterials hold great potential in the development of lithium-ion microbatteries and could assist in developing ever smaller and more reliable power sources to facilitate 21st Century life. Professor Kuan-Jiuh Lin is based in the Department of Chemistry, National Chung Hsing University,\n Taiwan, and runs the Interfacial Optical-Electronic (IOE) Lab. He and his team leader Dr Wen-Yin Ko are working to address gaps in nanotechnology, including how to conquer the strong interfacial coupling between the porous semiconductor membrane and the electro-plasmon metal-surface film.\n Their research is expected to have broad applications across electronics and optoelectronics. In a recent project, the researchers are working to develop more efficient lithium-ion microbatteries (micro-LIBs) using active nanostructured anode materials such as carbon nanomaterials composed\n of porous carbon, graphene and carbon nanotubes (CNTs). The researchers have developed a lightweight and high-rate CNT-based anode system that holds great potential for fast-charging batteries. The team has also created metal-doped MnO2 nanowalls with inter-networked vertically-oriented\n three-dimensional (3D) porous frameworks directly onto a AgCNT modified current collector, resulting in a superior performance anode material for LIBs. The researchers also created a novel 3D porous scaffold anode material of silicon–porphyrin pearl-chain-like nanowires which was placed\n onto the surface of a bundled titanium dioxide (TiO2) nanowire. In a world first, Lin and the team were able to achieve dial functionalities of antireflective and electrochemical properties-based anatase TiO2 nanowire devices with a high-porosity cross-linked geometry\n directly grown onto transparent conductive glass.","PeriodicalId":88895,"journal":{"name":"IMPACT magazine","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMPACT magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21820/23987073.2022.3.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nanomaterials hold great potential in the development of lithium-ion microbatteries and could assist in developing ever smaller and more reliable power sources to facilitate 21st Century life. Professor Kuan-Jiuh Lin is based in the Department of Chemistry, National Chung Hsing University,
Taiwan, and runs the Interfacial Optical-Electronic (IOE) Lab. He and his team leader Dr Wen-Yin Ko are working to address gaps in nanotechnology, including how to conquer the strong interfacial coupling between the porous semiconductor membrane and the electro-plasmon metal-surface film.
Their research is expected to have broad applications across electronics and optoelectronics. In a recent project, the researchers are working to develop more efficient lithium-ion microbatteries (micro-LIBs) using active nanostructured anode materials such as carbon nanomaterials composed
of porous carbon, graphene and carbon nanotubes (CNTs). The researchers have developed a lightweight and high-rate CNT-based anode system that holds great potential for fast-charging batteries. The team has also created metal-doped MnO2 nanowalls with inter-networked vertically-oriented
three-dimensional (3D) porous frameworks directly onto a AgCNT modified current collector, resulting in a superior performance anode material for LIBs. The researchers also created a novel 3D porous scaffold anode material of silicon–porphyrin pearl-chain-like nanowires which was placed
onto the surface of a bundled titanium dioxide (TiO2) nanowire. In a world first, Lin and the team were able to achieve dial functionalities of antireflective and electrochemical properties-based anatase TiO2 nanowire devices with a high-porosity cross-linked geometry
directly grown onto transparent conductive glass.