Performance Evaluation of Face Recognition System using various Distance Classifiers

Preeti, Dinesh Kumar
{"title":"Performance Evaluation of Face Recognition System using various Distance Classifiers","authors":"Preeti, Dinesh Kumar","doi":"10.1109/ICCMC.2018.8487835","DOIUrl":null,"url":null,"abstract":"Face recognition applications are gaining popularity day by day. Feature extraction, selection, and recognition are the three main steps of face recognition system. Recognition is done using classifiers as these play a vital role in making the system recognize the faces accurately to the extent possible. This paper evaluates the performance of the system using four different distance classifiers over ORL databases. DCT (Discrete Cosine Transform)-PCA (Principal Component Analysis) and LDA (Linear Discriminate Analysis) methods followed by Cuckoo Search algorithm have been used for extraction and selection of important features respectively. The results demonstrate the efficiency and efficacy of the face recognition system upon using Euclidean distance classifier.","PeriodicalId":6604,"journal":{"name":"2018 Second International Conference on Computing Methodologies and Communication (ICCMC)","volume":"27 1","pages":"322-327"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC.2018.8487835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Face recognition applications are gaining popularity day by day. Feature extraction, selection, and recognition are the three main steps of face recognition system. Recognition is done using classifiers as these play a vital role in making the system recognize the faces accurately to the extent possible. This paper evaluates the performance of the system using four different distance classifiers over ORL databases. DCT (Discrete Cosine Transform)-PCA (Principal Component Analysis) and LDA (Linear Discriminate Analysis) methods followed by Cuckoo Search algorithm have been used for extraction and selection of important features respectively. The results demonstrate the efficiency and efficacy of the face recognition system upon using Euclidean distance classifier.
使用不同距离分类器的人脸识别系统性能评价
人脸识别应用日益普及。特征提取、选择和识别是人脸识别系统的三个主要步骤。识别是使用分类器完成的,因为分类器在使系统尽可能准确地识别人脸方面起着至关重要的作用。本文在ORL数据库上使用四种不同的距离分类器来评估系统的性能。分别采用DCT (Discrete Cosine Transform)-PCA (Principal Component Analysis)和LDA (Linear discriminative Analysis)方法结合布谷鸟搜索算法进行重要特征的提取和选择。实验结果表明,采用欧氏距离分类器的人脸识别系统是高效有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信