An Algorithm for Solving Indefinite Quadratic Programming Problems

S. Amael
{"title":"An Algorithm for Solving Indefinite Quadratic Programming Problems","authors":"S. Amael","doi":"10.4172/2168-9679.1000380","DOIUrl":null,"url":null,"abstract":"In this paper, we give in section (1) compact description of the algorithm for solving general quadratic programming problems (that is, obtaining a local minimum of a quadratic function subject to inequality constraints) is presented. In section (2), we give practical application of the algorithm, we also discuss the computation work and performing by the algorithm and try to achieve efficiency and stability as possible as we can. In section (3), we show how to update the QR-factors of , when the tableau is complementary ,we give updating to the LDLT-Factors of . In section (4) we are not going to describe a fully detailed method of obtaining an initial feasible point, since linear programming literature is full of such techniques.","PeriodicalId":15007,"journal":{"name":"Journal of Applied and Computational Mathematics","volume":"27 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9679.1000380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we give in section (1) compact description of the algorithm for solving general quadratic programming problems (that is, obtaining a local minimum of a quadratic function subject to inequality constraints) is presented. In section (2), we give practical application of the algorithm, we also discuss the computation work and performing by the algorithm and try to achieve efficiency and stability as possible as we can. In section (3), we show how to update the QR-factors of , when the tableau is complementary ,we give updating to the LDLT-Factors of . In section (4) we are not going to describe a fully detailed method of obtaining an initial feasible point, since linear programming literature is full of such techniques.
求解不定二次规划问题的一种算法
本文在第(1)节中给出求解一般二次规划问题(即在不等式约束下求二次函数的局部极小值)的算法的简洁描述。在第(2)节中,我们给出了算法的实际应用,讨论了算法的计算工作和执行,并尽可能地实现效率和稳定性。在第(3)节中,我们展示了如何更新的qr因子,当表互补时,我们对的ldlt因子进行更新。在第(4)节中,我们不打算详细描述获得初始可行点的方法,因为线性规划文献中充满了这样的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信