Ginsenoside Rk2 Protects against Ulcerative Colitis via Inactivating ERK/MEK Pathway by SIRT1.

Xiaodong Huang, Jianwei Xiao, Mudan Wen, Jing-Tao Liang
{"title":"Ginsenoside Rk2 Protects against Ulcerative Colitis via Inactivating ERK/MEK Pathway by SIRT1.","authors":"Xiaodong Huang, Jianwei Xiao, Mudan Wen, Jing-Tao Liang","doi":"10.1615/jenvironpatholtoxicoloncol.2021039648","DOIUrl":null,"url":null,"abstract":"BACKGROUND Chinese traditional medicine is widely used in the treatment of ulcerative colitis (UC). Ginsenoside Rk2 is a newly discovered dammarane triterpenoid saponin isolated from ginseng. Our study aimed to investigate the effects of Ginsenoside Rk2 on UC. METHODS Human clones of colorectal adenocarcinoma Caco-2 cells and human intestinal epithelial THP-1 cells were co-cultured to establish a UC model in vitro. Cell viability and apoptosis were analyzed by cell counting kit 8 (CCK-8) and flow cytometry assay, respectively. Inflammatory cytokines' mRNA levels were measured by real-time quantitative polymerase chain reaction (RT-qPCR). Western blot was applied to examine the protein expression of apoptosis-associated proteins and the activation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MEK) pathway. Furthermore, fisetin, an ERK kinase activator, was used to carry out rescue experiment. SRT1720, an activator of SIRT1, was applied to increase the SIRT1 protein levels while SIRT1 inhibitor nicotinamide (NAM) exerted the opposite effect. RESULTS Ginsenoside Rk2 promoted cell viability, suppressed cell apoptosis, and reduced the release of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-10, and tumor necrosis factor-α (TNF-α) of HT-29 cells in UC model in a concentration-dependent manner. Meanwhile, the inhibitory effects of Ginsenoside Rk2 on the ERK/MEK pathway strengthened with the increase of concentration, and was verified by fisetin application. Furthermore, the upregulation of SIRT1 induced by Ginsenoside Rk2 prompted dephosphorylation of ERK and MEK to attenuate ERK/MEK pathway activation and reduced inflammatory progress, which was confirmed by SRT1720 as well as NAM. CONCLUSIONS Ginsenoside Rk2 inactivated ERK/MEK pathway by regulating SIRT1 to restore the cellular function of human intestinal epithelial THP-1 cells. Therefore, Ginsenoside Rk2 may be effective in the treatment of UC.","PeriodicalId":94332,"journal":{"name":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","volume":"36 1","pages":"89-98"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/jenvironpatholtoxicoloncol.2021039648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

BACKGROUND Chinese traditional medicine is widely used in the treatment of ulcerative colitis (UC). Ginsenoside Rk2 is a newly discovered dammarane triterpenoid saponin isolated from ginseng. Our study aimed to investigate the effects of Ginsenoside Rk2 on UC. METHODS Human clones of colorectal adenocarcinoma Caco-2 cells and human intestinal epithelial THP-1 cells were co-cultured to establish a UC model in vitro. Cell viability and apoptosis were analyzed by cell counting kit 8 (CCK-8) and flow cytometry assay, respectively. Inflammatory cytokines' mRNA levels were measured by real-time quantitative polymerase chain reaction (RT-qPCR). Western blot was applied to examine the protein expression of apoptosis-associated proteins and the activation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MEK) pathway. Furthermore, fisetin, an ERK kinase activator, was used to carry out rescue experiment. SRT1720, an activator of SIRT1, was applied to increase the SIRT1 protein levels while SIRT1 inhibitor nicotinamide (NAM) exerted the opposite effect. RESULTS Ginsenoside Rk2 promoted cell viability, suppressed cell apoptosis, and reduced the release of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-10, and tumor necrosis factor-α (TNF-α) of HT-29 cells in UC model in a concentration-dependent manner. Meanwhile, the inhibitory effects of Ginsenoside Rk2 on the ERK/MEK pathway strengthened with the increase of concentration, and was verified by fisetin application. Furthermore, the upregulation of SIRT1 induced by Ginsenoside Rk2 prompted dephosphorylation of ERK and MEK to attenuate ERK/MEK pathway activation and reduced inflammatory progress, which was confirmed by SRT1720 as well as NAM. CONCLUSIONS Ginsenoside Rk2 inactivated ERK/MEK pathway by regulating SIRT1 to restore the cellular function of human intestinal epithelial THP-1 cells. Therefore, Ginsenoside Rk2 may be effective in the treatment of UC.
人参皂苷Rk2通过SIRT1灭活ERK/MEK通路来预防溃疡性结肠炎。
背景中药在溃疡性结肠炎(UC)的治疗中被广泛应用。人参皂苷Rk2是从人参中分离得到的一种新发现的达玛烷型三萜皂苷。本研究旨在探讨人参皂苷Rk2对UC的影响。方法将人结直肠癌Caco-2细胞克隆与人肠上皮细胞THP-1细胞共培养,建立UC体外模型。采用细胞计数试剂盒8 (CCK-8)和流式细胞术分析细胞活力和凋亡情况。采用实时定量聚合酶链反应(RT-qPCR)检测炎症因子mRNA水平。Western blot检测凋亡相关蛋白的表达和细胞外信号调节激酶(ERK)/丝裂原活化蛋白激酶(MEK)通路的激活情况。采用ERK激酶激活剂非瑟酮进行抢救实验。SRT1720是SIRT1的激活剂,用于提高SIRT1蛋白水平,而SIRT1抑制剂烟酰胺(NAM)则起到相反的作用。结果人参皂苷Rk2提高UC模型HT-29细胞的细胞活力,抑制细胞凋亡,降低促炎因子IL -1β、IL-6、IL-10、肿瘤坏死因子-α (TNF-α)的释放,并呈浓度依赖性。同时,人参皂苷Rk2对ERK/MEK通路的抑制作用随着浓度的增加而增强,并通过非瑟酮应用得到验证。此外,人参皂苷Rk2诱导SIRT1上调,促使ERK和MEK去磷酸化,从而减弱ERK/MEK通路的激活,减缓炎症进程,SRT1720和NAM证实了这一点。结论人参皂苷Rk2通过调节SIRT1灭活ERK/MEK通路,恢复人肠上皮THP-1细胞的功能。因此,人参皂苷Rk2可能对UC的治疗有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信