Finding Things: Image Parsing with Regions and Per-Exemplar Detectors

Joseph Tighe, S. Lazebnik
{"title":"Finding Things: Image Parsing with Regions and Per-Exemplar Detectors","authors":"Joseph Tighe, S. Lazebnik","doi":"10.1109/CVPR.2013.386","DOIUrl":null,"url":null,"abstract":"This paper presents a system for image parsing, or labeling each pixel in an image with its semantic category, aimed at achieving broad coverage across hundreds of object categories, many of them sparsely sampled. The system combines region-level features with per-exemplar sliding window detectors. Per-exemplar detectors are better suited for our parsing task than traditional bounding box detectors: they perform well on classes with little training data and high intra-class variation, and they allow object masks to be transferred into the test image for pixel-level segmentation. The proposed system achieves state-of-the-art accuracy on three challenging datasets, the largest of which contains 45,676 images and 232 labels.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"11 1","pages":"3001-3008"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"227","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 227

Abstract

This paper presents a system for image parsing, or labeling each pixel in an image with its semantic category, aimed at achieving broad coverage across hundreds of object categories, many of them sparsely sampled. The system combines region-level features with per-exemplar sliding window detectors. Per-exemplar detectors are better suited for our parsing task than traditional bounding box detectors: they perform well on classes with little training data and high intra-class variation, and they allow object masks to be transferred into the test image for pixel-level segmentation. The proposed system achieves state-of-the-art accuracy on three challenging datasets, the largest of which contains 45,676 images and 232 labels.
寻找事物:使用区域和每样例检测器进行图像解析
本文提出了一个用于图像解析的系统,或用其语义类别标记图像中的每个像素,旨在实现数百个对象类别的广泛覆盖,其中许多是稀疏采样的。该系统结合了区域级特征和每样例滑动窗口检测器。每样例检测器比传统的边界盒检测器更适合我们的解析任务:它们在训练数据少、类内变化大的类上表现良好,并且它们允许将对象掩码转移到测试图像中进行像素级分割。该系统在三个具有挑战性的数据集上实现了最先进的精度,其中最大的数据集包含45,676张图像和232个标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信