A Memory Transformer Network for Incremental Learning

Ahmet Iscen, Thomas Bird, Mathilde Caron, A. Fathi, C. Schmid
{"title":"A Memory Transformer Network for Incremental Learning","authors":"Ahmet Iscen, Thomas Bird, Mathilde Caron, A. Fathi, C. Schmid","doi":"10.48550/arXiv.2210.04485","DOIUrl":null,"url":null,"abstract":"We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from. Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the\"catastrophic forgetting\"of previously seen classes. One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks. In our paper, we propose to enhance the utilization of this memory bank: we not only use it as a source of additional training data like existing works but also integrate it in the prediction process explicitly.Our method, the Memory Transformer Network (MTN), learns how to combine and aggregate the information from the nearest neighbors in the memory with a transformer to make more accurate predictions. We conduct extensive experiments and ablations to evaluate our approach. We show that MTN achieves state-of-the-art performance on the challenging ImageNet-1k and Google-Landmarks-1k incremental learning benchmarks.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"49 1","pages":"388"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.04485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from. Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the"catastrophic forgetting"of previously seen classes. One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks. In our paper, we propose to enhance the utilization of this memory bank: we not only use it as a source of additional training data like existing works but also integrate it in the prediction process explicitly.Our method, the Memory Transformer Network (MTN), learns how to combine and aggregate the information from the nearest neighbors in the memory with a transformer to make more accurate predictions. We conduct extensive experiments and ablations to evaluate our approach. We show that MTN achieves state-of-the-art performance on the challenging ImageNet-1k and Google-Landmarks-1k incremental learning benchmarks.
增量学习的记忆变压器网络
我们研究了类增量学习,这是一种训练设置,在这种设置中,随着时间的推移,观察新的数据类,以便模型从中学习。尽管问题的表述很简单,但将分类模型天真地应用于类增量学习会导致对以前见过的类的“灾难性遗忘”。目前最成功的方法之一是使用范例记忆,它通过将过去数据的子集保存到记忆库中,并在训练未来任务时利用它来防止遗忘,从而克服了灾难性遗忘的问题。在我们的论文中,我们建议提高这个记忆库的利用率:我们不仅将其作为现有作品的额外训练数据的来源,而且还将其明确地集成到预测过程中。我们的方法,记忆变压器网络(Memory Transformer Network, MTN),学习如何结合和聚合记忆中最近邻居的信息,用变压器来做出更准确的预测。我们进行大量的实验和消融来评估我们的方法。我们表明,MTN在具有挑战性的ImageNet-1k和google - landmark -1k增量学习基准上实现了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信