An 8.3-to-18Gbps Reconfigurable SCA-Resistant/Dual-Core/Blind-Bulk AES Engine in Intel 4 CMOS

Raghavan Kumar, Vikram B. Suresh, M. Anders, S. Hsu, A. Agarwal, V. De, S. Mathew
{"title":"An 8.3-to-18Gbps Reconfigurable SCA-Resistant/Dual-Core/Blind-Bulk AES Engine in Intel 4 CMOS","authors":"Raghavan Kumar, Vikram B. Suresh, M. Anders, S. Hsu, A. Agarwal, V. De, S. Mathew","doi":"10.1109/ISSCC42614.2022.9731739","DOIUrl":null,"url":null,"abstract":"Power and electromagnetic (EM) side-channel attacks (SCA) exploit data-dependent power consumption from cryptographic engines to extract embedded secret keys. While series-connected voltage regulators [1], [2] and arithmetic countermeasures like heterogenous Galois-field arithmetic [3] provide acceptable levels of side-channel leakage suppression, they cannot defend against determined adversaries. Random additive masking [4] on the other hand, provides a provably-secure solution [5] that disrupts first-order correlations between measured power/EM signatures and secret keys, while incurring $2\\times$ overhead in area and power consumption. In this paper, we demonstrate a reconfigurable AES accelerator fabricated in Intel 4 CMOS process with minimum-time-to-disclosure (MTD) $> 1\\text{B power}/\\text{EM}$ traces in on-demand SCA-resistant mode, while providing a $2.2\\times$ boost in encryption performance during a dual-core mode of operation (Fig. 34.4.1). When coupled with side-channel attack detection techniques [6], [7], this approach allows the user to operate at $> 2\\times$ AES throughput during the safe mode of operation in trusted environments, with the ability to quickly trade-off throughput for a higher level of SCA-resistance when the onset of an attack is detected. In the blind-bulk mode of operation, the accelerator randomly switches at a user-specified rate between SCA-resistant and dual-core modes while encrypting bulk data, providing $1.14-\\text{to}-1.6\\times$ boost in encryption throughput with measured MTD $> 50\\mathrm{M}$ traces.","PeriodicalId":6830,"journal":{"name":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"198 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42614.2022.9731739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Power and electromagnetic (EM) side-channel attacks (SCA) exploit data-dependent power consumption from cryptographic engines to extract embedded secret keys. While series-connected voltage regulators [1], [2] and arithmetic countermeasures like heterogenous Galois-field arithmetic [3] provide acceptable levels of side-channel leakage suppression, they cannot defend against determined adversaries. Random additive masking [4] on the other hand, provides a provably-secure solution [5] that disrupts first-order correlations between measured power/EM signatures and secret keys, while incurring $2\times$ overhead in area and power consumption. In this paper, we demonstrate a reconfigurable AES accelerator fabricated in Intel 4 CMOS process with minimum-time-to-disclosure (MTD) $> 1\text{B power}/\text{EM}$ traces in on-demand SCA-resistant mode, while providing a $2.2\times$ boost in encryption performance during a dual-core mode of operation (Fig. 34.4.1). When coupled with side-channel attack detection techniques [6], [7], this approach allows the user to operate at $> 2\times$ AES throughput during the safe mode of operation in trusted environments, with the ability to quickly trade-off throughput for a higher level of SCA-resistance when the onset of an attack is detected. In the blind-bulk mode of operation, the accelerator randomly switches at a user-specified rate between SCA-resistant and dual-core modes while encrypting bulk data, providing $1.14-\text{to}-1.6\times$ boost in encryption throughput with measured MTD $> 50\mathrm{M}$ traces.
基于Intel 4 CMOS的8.3- 18gbps可重构抗sca /双核/盲体AES引擎
功率和电磁(EM)侧信道攻击(SCA)利用加密引擎中与数据相关的功耗来提取嵌入的密钥。虽然串联稳压器[1],[2]和异质伽罗瓦场算法[3]等算术对策提供了可接受的侧通道泄漏抑制水平,但它们无法防御确定的对手。另一方面,随机加性掩蔽[4]提供了一种可证明的安全解决方案[5],它破坏了测量的功率/EM签名和密钥之间的一阶相关性,同时在面积和功耗上产生2倍的开销。在本文中,我们展示了在Intel 4 CMOS工艺中制造的可重构AES加速器,在按需抗ca模式下具有最小披露时间(MTD) $> 1\text{B power}/\text{EM}$迹线,同时在双核操作模式下提供$2.2\times$的加密性能提升(图34.4.1)。当与侧信道攻击检测技术[6],[7]相结合时,这种方法允许用户在可信环境的安全操作模式下以$> 2\倍$ AES吞吐量运行,并且能够在检测到攻击发生时快速权衡吞吐量以获得更高级别的sca抗性。在盲批量操作模式下,加速器在加密批量数据时,以用户指定的速率在抗sma模式和双核模式之间随机切换,在测量的MTD > 50\ maththrm {M}$跟踪下,加密吞吐量提高了1.14至1.6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信