Multi-dimensional characteristic construction methods of computational materials under big data environment

Lihao Chen , Shuopu Wang , Chen Zou , Ben Xu , Ke Bi
{"title":"Multi-dimensional characteristic construction methods of computational materials under big data environment","authors":"Lihao Chen ,&nbsp;Shuopu Wang ,&nbsp;Chen Zou ,&nbsp;Ben Xu ,&nbsp;Ke Bi","doi":"10.1016/j.chphma.2022.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>Characteristic construction is an important part of material data analysis. In the big data environment, the development of material data science will have implications for multidimensional data analysis methods. Among these, the machine learning method for multidimensional data models can be widely applied to material data types, including element ratios, atomic compositions, electronic arrangements, molecular structures, and energy distributions. For high-throughput computing materials, it is recommended in material data science to judge and extract the main characteristics influencing material properties and predict novel functional materials using the discovered laws. Consequently, we considere the characteristic construction, learning prediction, feature extraction, and high-order analysis of computational materials as the main research purposes, and construct a composite analysis model of the material system by combining data preprocessing, data mining, data evaluation, and knowledge representation as the main steps of data analysis. This demonstrates that a method to comprehensively judge the properties of materials by constructing the characteristics of materials in different dimensions is essential.</p></div>","PeriodicalId":100236,"journal":{"name":"ChemPhysMater","volume":"1 3","pages":"Pages 183-194"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772571522000171/pdfft?md5=3603d28fa1c50fe3eb3239ddaae0422e&pid=1-s2.0-S2772571522000171-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhysMater","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772571522000171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Characteristic construction is an important part of material data analysis. In the big data environment, the development of material data science will have implications for multidimensional data analysis methods. Among these, the machine learning method for multidimensional data models can be widely applied to material data types, including element ratios, atomic compositions, electronic arrangements, molecular structures, and energy distributions. For high-throughput computing materials, it is recommended in material data science to judge and extract the main characteristics influencing material properties and predict novel functional materials using the discovered laws. Consequently, we considere the characteristic construction, learning prediction, feature extraction, and high-order analysis of computational materials as the main research purposes, and construct a composite analysis model of the material system by combining data preprocessing, data mining, data evaluation, and knowledge representation as the main steps of data analysis. This demonstrates that a method to comprehensively judge the properties of materials by constructing the characteristics of materials in different dimensions is essential.

Abstract Image

大数据环境下计算材料的多维特征构建方法
特征构建是材料数据分析的重要组成部分。在大数据环境下,材料数据科学的发展将对多维数据分析方法产生影响。其中,多维数据模型的机器学习方法可以广泛应用于材料数据类型,包括元素比、原子组成、电子排列、分子结构、能量分布等。对于高通量计算材料,在材料数据科学中建议判断和提取影响材料性能的主要特征,并利用发现的规律预测新的功能材料。因此,我们将计算材料的特征构建、学习预测、特征提取和高阶分析作为主要研究目的,并将数据预处理、数据挖掘、数据评估和知识表示作为数据分析的主要步骤,构建材料系统的复合分析模型。这说明通过构建材料在不同维度上的特性来综合判断材料性能的方法是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信