Personalized point-of-interest recommendation by mining users' preference transition

Xin Liu, Yong Liu, K. Aberer, C. Miao
{"title":"Personalized point-of-interest recommendation by mining users' preference transition","authors":"Xin Liu, Yong Liu, K. Aberer, C. Miao","doi":"10.1145/2505515.2505639","DOIUrl":null,"url":null,"abstract":"Location-based social networks (LBSNs) offer researchers rich data to study people's online activities and mobility patterns. One important application of such studies is to provide personalized point-of-interest (POI) recommendations to enhance user experience in LBSNs. Previous solutions directly predict users' preference on locations but fail to provide insights about users' preference transitions among locations. In this work, we propose a novel category-aware POI recommendation model, which exploits the transition patterns of users' preference over location categories to improve location recommendation accuracy. Our approach consists of two stages: (1) preference transition (over location categories) prediction, and (2) category-aware POI recommendation. Matrix factorization is employed to predict a user's preference transitions over categories and then her preference on locations in the corresponding categories. Real data based experiments demonstrate that our approach outperforms the state-of-the-art POI recommendation models by at least 39.75% in terms of recall.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"260","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 260

Abstract

Location-based social networks (LBSNs) offer researchers rich data to study people's online activities and mobility patterns. One important application of such studies is to provide personalized point-of-interest (POI) recommendations to enhance user experience in LBSNs. Previous solutions directly predict users' preference on locations but fail to provide insights about users' preference transitions among locations. In this work, we propose a novel category-aware POI recommendation model, which exploits the transition patterns of users' preference over location categories to improve location recommendation accuracy. Our approach consists of two stages: (1) preference transition (over location categories) prediction, and (2) category-aware POI recommendation. Matrix factorization is employed to predict a user's preference transitions over categories and then her preference on locations in the corresponding categories. Real data based experiments demonstrate that our approach outperforms the state-of-the-art POI recommendation models by at least 39.75% in terms of recall.
通过挖掘用户的偏好转换,提供个性化的兴趣点推荐
基于位置的社交网络(LBSNs)为研究人们的在线活动和移动模式提供了丰富的数据。此类研究的一个重要应用是提供个性化的兴趣点(POI)建议,以增强LBSNs的用户体验。以前的解决方案直接预测用户对位置的偏好,但无法提供用户在位置之间偏好转换的见解。在这项工作中,我们提出了一种新的类别感知POI推荐模型,该模型利用用户对位置类别的偏好转换模式来提高位置推荐的准确性。我们的方法包括两个阶段:(1)偏好转换(超过位置类别)预测,以及(2)类别感知POI推荐。使用矩阵分解来预测用户对类别的偏好转换,然后预测其对相应类别中位置的偏好。基于真实数据的实验表明,我们的方法在召回率方面优于最先进的POI推荐模型至少39.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信