1-absorbing primary submodules

IF 0.8 4区 数学 Q2 MATHEMATICS
E. Y. Çeli̇kel
{"title":"1-absorbing primary submodules","authors":"E. Y. Çeli̇kel","doi":"10.2478/auom-2021-0045","DOIUrl":null,"url":null,"abstract":"Abstract Let R be a commutative ring with non-zero identity and M be a unitary R-module. The goal of this paper is to extend the concept of 1-absorbing primary ideals to 1-absorbing primary submodules. A proper submodule N of M is said to be a 1-absorbing primary submodule if whenever non-unit elements a, b ∈ R and m ∈ M with abm ∈ N, then either ab ∈ (N :RM) or m ∈ M − rad(N). Various properties and chacterizations of this class of submodules are considered. Moreover, 1-absorbing primary avoidance theorem is proved.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"47 1","pages":"285 - 296"},"PeriodicalIF":0.8000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2021-0045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Let R be a commutative ring with non-zero identity and M be a unitary R-module. The goal of this paper is to extend the concept of 1-absorbing primary ideals to 1-absorbing primary submodules. A proper submodule N of M is said to be a 1-absorbing primary submodule if whenever non-unit elements a, b ∈ R and m ∈ M with abm ∈ N, then either ab ∈ (N :RM) or m ∈ M − rad(N). Various properties and chacterizations of this class of submodules are considered. Moreover, 1-absorbing primary avoidance theorem is proved.
吸收1的主子模块
设R是一个非零单位元的交换环,M是一个酉R模。本文的目的是将吸收1元的主理想的概念推广到吸收1元的主子模。如果当非单位元素A, b∈R, M∈M且abm∈N时,则ab∈(N:RM)或M∈M - rad(N),则M的固有子模N是一个吸收1的主子模。考虑了这类子模块的各种属性和特征。此外,还证明了吸1初级回避定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
15
审稿时长
6-12 weeks
期刊介绍: This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信