Electronic THz Pencil Beam Forming and 2D Steering for High Angular-Resolution Operation: A 98 $\times$ 98-Unit 265GHz CMOS Reflectarray with In-Unit Digital Beam Shaping and Squint Correction

N. Monroe, Georgios C. Doqiamis, R.A. Stingel, Preston Myers, Xibi Chen, R. Han
{"title":"Electronic THz Pencil Beam Forming and 2D Steering for High Angular-Resolution Operation: A 98 $\\times$ 98-Unit 265GHz CMOS Reflectarray with In-Unit Digital Beam Shaping and Squint Correction","authors":"N. Monroe, Georgios C. Doqiamis, R.A. Stingel, Preston Myers, Xibi Chen, R. Han","doi":"10.1109/ISSCC42614.2022.9731671","DOIUrl":null,"url":null,"abstract":"Ultra-sharp beam forming and high-angular-resolution steering in both azimuth and elevation directions are required in high-performance imaging sensors, spatial-multiplexed wireless links and other applications. This poses great challenges due to the fundamental relationship between the beamwidth and the dimension of the antenna aperture. As shown in Fig. 4.5.1, the aperture size required to achieve 1 ° of 3dB beamwidth is $0.6\\times 0.6\\mathrm{m}^{2}$ and $0.2\\times 0.2\\mathrm{m}^{2}$ at 24GHz and 77GHz, respectively. In current radars, sparse MIMO antenna schemes are adopted to synthesize virtual arrays with the above size in one dimension. However, they require intensive signal processing of many channels. The complex signal routing and placement of active electronics also leads to challenges in the 2D scaling required for pencil beam forming. By increasing the wave frequency to 265GHz, the work in this paper significantly reduces the aperture area, allowing it to be fully realized by digitally controlled, reflective antennas in CMOS microelectronic chips (Fig. 4.5.1). Similar to a concave mirror, a reflectarray, when illuminated by a single radar source, applies incident-angle-dependent phase shifts (e.g. $\\varphi_{1}$ and $\\varphi_{2}$ in Fig. 4.5.1) to the wave and re-focuses it towards a desired direction. This quasi-optical spatial feed eliminates the high-frequency signal routing and complex processing inherent to MIMO arrays. Employing $98\\times 98$ antenna elements, we experimentally demonstrate the forming and electronic steering of a THz pencil beam with- 1 ° beamwidth in two dimensions. With under-antenna integration of dense memory cells, sidelobe reduction and squint correction are also achieved.","PeriodicalId":6830,"journal":{"name":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"7 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42614.2022.9731671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Ultra-sharp beam forming and high-angular-resolution steering in both azimuth and elevation directions are required in high-performance imaging sensors, spatial-multiplexed wireless links and other applications. This poses great challenges due to the fundamental relationship between the beamwidth and the dimension of the antenna aperture. As shown in Fig. 4.5.1, the aperture size required to achieve 1 ° of 3dB beamwidth is $0.6\times 0.6\mathrm{m}^{2}$ and $0.2\times 0.2\mathrm{m}^{2}$ at 24GHz and 77GHz, respectively. In current radars, sparse MIMO antenna schemes are adopted to synthesize virtual arrays with the above size in one dimension. However, they require intensive signal processing of many channels. The complex signal routing and placement of active electronics also leads to challenges in the 2D scaling required for pencil beam forming. By increasing the wave frequency to 265GHz, the work in this paper significantly reduces the aperture area, allowing it to be fully realized by digitally controlled, reflective antennas in CMOS microelectronic chips (Fig. 4.5.1). Similar to a concave mirror, a reflectarray, when illuminated by a single radar source, applies incident-angle-dependent phase shifts (e.g. $\varphi_{1}$ and $\varphi_{2}$ in Fig. 4.5.1) to the wave and re-focuses it towards a desired direction. This quasi-optical spatial feed eliminates the high-frequency signal routing and complex processing inherent to MIMO arrays. Employing $98\times 98$ antenna elements, we experimentally demonstrate the forming and electronic steering of a THz pencil beam with- 1 ° beamwidth in two dimensions. With under-antenna integration of dense memory cells, sidelobe reduction and squint correction are also achieved.
用于高角分辨率操作的电子太赫兹铅笔波束形成和2D转向:具有单元内数字波束整形和斜视校正的98 $\times$ 98单元265GHz CMOS反射阵
在高性能成像传感器、空间复用无线链路和其他应用中,需要在方位角和仰角方向上进行超尖锐波束形成和高角分辨率转向。由于波束宽度和天线孔径尺寸之间的基本关系,这就提出了很大的挑战。如图4.5.1所示,在24GHz和77GHz时,实现1°3dB波束宽度所需的孔径尺寸分别为$0.6\times 0.6\mathrm{m}^{2}$和$0.2\times 0.2\mathrm{m}^{2}$。当前雷达采用稀疏MIMO天线方案在一维上合成上述尺寸的虚拟阵列。然而,它们需要对多个通道进行密集的信号处理。复杂的信号路由和有源电子器件的放置也导致了铅笔束形成所需的二维缩放的挑战。通过将波频率提高到265GHz,本文的工作显著减小了孔径面积,使其完全可以通过CMOS微电子芯片中的数字控制反射天线来实现(图4.5.1)。与凹面镜类似,当被单个雷达源照射时,反射阵对波施加与入射角相关的相移(例如图4.5.1中的$\varphi_{1}$和$\varphi_{2}$)并将其重新聚焦到所需的方向。这种准光学空间馈电消除了MIMO阵列固有的高频信号路由和复杂处理。采用$98 × 98$天线单元,实验演示了二维波束宽度为- 1°的太赫兹铅笔波束的形成和电子转向。通过天线下密集存储单元的集成,还可以实现副瓣降低和斜视校正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信