{"title":"Design of a Crooked-Wire Antenna by Differential Evolution and 3D Printing","authors":"Fei Zhao, Qinghui Xu, Sanyou Zeng","doi":"10.4018/ijcini.20211001.oa8","DOIUrl":null,"url":null,"abstract":"Antenna design often requires dealing with multiple constraints in the requirements, and the designs can be modeled as constrained optimization problems (COPs). However, the constraints are usually very strange, and then the feasible solutions are hard to be found. At the same time, the robustness for antenna design is an important consideration as well. To solve the above issues, the combination of differential evolution algorithm (DE) and 3D-printing technique is presented to design a new crooked-wire antenna. In the design process, DE is adopted to handle the constraints since DE is simple and efficient in finding feasible solutions. The objective of the modeled COP, which is the sum of variance of the gain, axial ratio, and VSWR over the frequency band, is used to enhance the robustness of the antenna and widen the frequency band without additional computational cost. The precision of fabricating the antenna is ensured by using 3D-printing. The design of the NASA LADEE satellite antenna is chosen as an example to verify the method of this paper.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"425 1","pages":"1-16"},"PeriodicalIF":0.6000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.20211001.oa8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Antenna design often requires dealing with multiple constraints in the requirements, and the designs can be modeled as constrained optimization problems (COPs). However, the constraints are usually very strange, and then the feasible solutions are hard to be found. At the same time, the robustness for antenna design is an important consideration as well. To solve the above issues, the combination of differential evolution algorithm (DE) and 3D-printing technique is presented to design a new crooked-wire antenna. In the design process, DE is adopted to handle the constraints since DE is simple and efficient in finding feasible solutions. The objective of the modeled COP, which is the sum of variance of the gain, axial ratio, and VSWR over the frequency band, is used to enhance the robustness of the antenna and widen the frequency band without additional computational cost. The precision of fabricating the antenna is ensured by using 3D-printing. The design of the NASA LADEE satellite antenna is chosen as an example to verify the method of this paper.
期刊介绍:
The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.