Learning Latent Architectural Distribution in Differentiable Neural Architecture Search via Variational Information Maximization

Yaoming Wang, Yuchen Liu, Wenrui Dai, Chenglin Li, Junni Zou, H. Xiong
{"title":"Learning Latent Architectural Distribution in Differentiable Neural Architecture Search via Variational Information Maximization","authors":"Yaoming Wang, Yuchen Liu, Wenrui Dai, Chenglin Li, Junni Zou, H. Xiong","doi":"10.1109/ICCV48922.2021.01209","DOIUrl":null,"url":null,"abstract":"Existing differentiable neural architecture search approaches simply assume the architectural distribution on each edge is independent of each other, which conflicts with the intrinsic properties of architecture. In this paper, we view the architectural distribution as the latent representation of specific data points. Then we propose Variational Information Maximization Neural Architecture Search (VIM-NAS) to leverage a simple yet effective convolutional neural network to model the latent representation, and optimize for a tractable variational lower bound to the mutual information between the data points and the latent representations. VIM-NAS automatically learns a nearly one-hot distribution from a continuous distribution with extremely fast convergence speed, e.g., converging with one epoch. Experimental results demonstrate VIM-NAS achieves state-of-the-art performance on various search spaces, including DARTS search space, NAS-Bench-1shot1, NAS-Bench-201, and simplified search spaces S1-S4. Specifically, VIM-NAS achieves a top-1 error rate of 2.45% and 15.80% within 10 minutes on CIFAR-10 and CIFAR-100, respectively, and a top-1 error rate of 24.0% when transferred to ImageNet.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"16 1","pages":"12292-12301"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.01209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Existing differentiable neural architecture search approaches simply assume the architectural distribution on each edge is independent of each other, which conflicts with the intrinsic properties of architecture. In this paper, we view the architectural distribution as the latent representation of specific data points. Then we propose Variational Information Maximization Neural Architecture Search (VIM-NAS) to leverage a simple yet effective convolutional neural network to model the latent representation, and optimize for a tractable variational lower bound to the mutual information between the data points and the latent representations. VIM-NAS automatically learns a nearly one-hot distribution from a continuous distribution with extremely fast convergence speed, e.g., converging with one epoch. Experimental results demonstrate VIM-NAS achieves state-of-the-art performance on various search spaces, including DARTS search space, NAS-Bench-1shot1, NAS-Bench-201, and simplified search spaces S1-S4. Specifically, VIM-NAS achieves a top-1 error rate of 2.45% and 15.80% within 10 minutes on CIFAR-10 and CIFAR-100, respectively, and a top-1 error rate of 24.0% when transferred to ImageNet.
基于变分信息最大化的可微神经结构搜索中潜在结构分布的学习
现有的可微神经结构搜索方法简单地假设每条边缘上的结构分布是相互独立的,这与结构的内在属性相冲突。在本文中,我们将架构分布视为特定数据点的潜在表示。然后,我们提出了变分信息最大化神经结构搜索(vims - nas),利用简单而有效的卷积神经网络来建模潜在表示,并优化数据点和潜在表示之间互信息的可处理变分下界。VIM-NAS从连续分布中自动学习到近一热分布,收敛速度极快,如一个epoch收敛。实验结果表明,VIM-NAS在各种搜索空间(包括DARTS搜索空间、NAS-Bench-1shot1、NAS-Bench-201和简化搜索空间S1-S4)上实现了最先进的性能。其中,VIM-NAS在CIFAR-10和CIFAR-100上的10分钟top-1错误率分别为2.45%和15.80%,传输到ImageNet时的top-1错误率为24.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信