Development and research of a neural network alternate incremental learning algorithm

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
A. Orlov, E. S. Abramova
{"title":"Development and research of a neural network alternate incremental learning algorithm","authors":"A. Orlov, E. S. Abramova","doi":"10.18287/2412-6179-co-1203","DOIUrl":null,"url":null,"abstract":"In this paper, the relevance of developing methods and algorithms for neural network incremental learning is shown. Families of incremental learning techniques are presented. A possibility of using the extreme learning machine for incremental learning is assessed. Experiments show that the extreme learning machine is suitable for incremental learning, but as the number of training examples increases, the neural network becomes unsuitable for further learning. To solve this problem, we propose a neural network incremental learning algorithm that alternately uses the extreme learning machine to correct the only output layer network weights (operation mode) and the backpropagation method (deep learning) to correct all network weights (sleep mode). During the operation mode, the neural network is assumed to produce results or learn from new tasks, optimizing its weights in the sleep mode. The proposed algorithm features the ability for real-time adaption to changing external conditions in the operation mode. The effectiveness of the proposed algorithm is shown by an example of solving the approximation problem. Approximation results after each step of the algorithm are presented. A comparison of the mean square error values when using the extreme learning machine for incremental learning and the developed algorithm of neural network alternate incremental learning is made.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1203","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, the relevance of developing methods and algorithms for neural network incremental learning is shown. Families of incremental learning techniques are presented. A possibility of using the extreme learning machine for incremental learning is assessed. Experiments show that the extreme learning machine is suitable for incremental learning, but as the number of training examples increases, the neural network becomes unsuitable for further learning. To solve this problem, we propose a neural network incremental learning algorithm that alternately uses the extreme learning machine to correct the only output layer network weights (operation mode) and the backpropagation method (deep learning) to correct all network weights (sleep mode). During the operation mode, the neural network is assumed to produce results or learn from new tasks, optimizing its weights in the sleep mode. The proposed algorithm features the ability for real-time adaption to changing external conditions in the operation mode. The effectiveness of the proposed algorithm is shown by an example of solving the approximation problem. Approximation results after each step of the algorithm are presented. A comparison of the mean square error values when using the extreme learning machine for incremental learning and the developed algorithm of neural network alternate incremental learning is made.
神经网络交替增量学习算法的开发与研究
本文介绍了神经网络增量学习的相关方法和算法。介绍了各种增量学习技术。评估了使用极限学习机进行增量学习的可能性。实验表明,极限学习机适合增量学习,但随着训练样例数量的增加,神经网络变得不适合进一步学习。为了解决这个问题,我们提出了一种神经网络增量学习算法,交替使用极限学习机修正唯一输出层网络权值(运行模式)和反向传播方法(深度学习)修正所有网络权值(睡眠模式)。在运行模式下,假设神经网络产生结果或从新的任务中学习,在睡眠模式下优化其权重。该算法具有实时适应运行模式中外部条件变化的能力。通过求解近似问题的实例验证了该算法的有效性。给出了算法每一步的逼近结果。比较了极限学习机增量学习和神经网络交替增量学习算法的均方误差值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信