{"title":"Parsimonious graphs for the most common trichords and tetrachords","authors":"L. Nuño","doi":"10.1080/17459737.2021.1923844","DOIUrl":null,"url":null,"abstract":"Parsimonious transformations are common patterns in different musical styles and eras. In some cases, they can be represented on the Tonnetz, Cube Dance, Power Towers, or the central region of an orbifold, mainly when they only include the most even trichords and tetrachords. In this paper, two novel graphs, called Cyclopes, are presented, which include more than double the number of chord types in previously published graphs, thus allowing to represent a larger musical repertoire in a practical way. Apart from parsimonious transformations, they are also especially suitable for representing trichords a major third apart, tetrachords a minor third apart, and the cadences V7–I(m) and II –V7–I(m) with major or minor tonic chords. Therefore, they allow to clearly visualize the relationship among the corresponding chords and better understand those patterns, as well as being efficient mnemonic resources, all of which make them useful tools both for music analysis and composition.","PeriodicalId":50138,"journal":{"name":"Journal of Mathematics and Music","volume":"7 1","pages":"125 - 139"},"PeriodicalIF":0.5000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Music","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17459737.2021.1923844","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
Parsimonious transformations are common patterns in different musical styles and eras. In some cases, they can be represented on the Tonnetz, Cube Dance, Power Towers, or the central region of an orbifold, mainly when they only include the most even trichords and tetrachords. In this paper, two novel graphs, called Cyclopes, are presented, which include more than double the number of chord types in previously published graphs, thus allowing to represent a larger musical repertoire in a practical way. Apart from parsimonious transformations, they are also especially suitable for representing trichords a major third apart, tetrachords a minor third apart, and the cadences V7–I(m) and II –V7–I(m) with major or minor tonic chords. Therefore, they allow to clearly visualize the relationship among the corresponding chords and better understand those patterns, as well as being efficient mnemonic resources, all of which make them useful tools both for music analysis and composition.
期刊介绍:
Journal of Mathematics and Music aims to advance the use of mathematical modelling and computation in music theory. The Journal focuses on mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances. In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, the Journal is open to a broad array of methodologies and topics, particularly those outside of established research fields such as acoustics, sound engineering, auditory perception, linguistics etc.