C. Mittag, J. Koski, M. Karalic, C. Thomas, A. Tuaz, A. Hatke, G. Gardner, M. Manfra, J. Danon, T. Ihn, K. Ensslin
{"title":"Few-Electron Single and Double Quantum Dots in an \nInAs\n Two-Dimensional Electron Gas","authors":"C. Mittag, J. Koski, M. Karalic, C. Thomas, A. Tuaz, A. Hatke, G. Gardner, M. Manfra, J. Danon, T. Ihn, K. Ensslin","doi":"10.1103/PRXQUANTUM.2.010321","DOIUrl":null,"url":null,"abstract":"Most proof-of-principle experiments for spin qubits have been performed using GaAs-based quantum dots because of the excellent control they offer over tunneling barriers and the orbital and spin degrees of freedom. Here, we present the first realization of high-quality single and double quantum dots hosted in an InAs two-dimensional electron gas (2DEG), demonstrating accurate control down to the few-electron regime, where we observe a clear Kondo effect and singlet-triplet spin blockade. We measure an electronic $g$-factor of $16$ and a typical magnitude of the random hyperfine fields on the dots of $\\sim 0.6\\, \\mathrm{mT}$. We estimate the spin-orbit length in the system to be $\\sim 5-10\\, \\mu \\mathrm{m}$, which is almost two orders of magnitude longer than typically measured in InAs nanostructures, achieved by a very symmetric design of the quantum well. These favorable properties put the InAs 2DEG on the map as a compelling host for studying fundamental aspects of spin qubits. Furthermore, having weak spin-orbit coupling in a material with a large Rashba coefficient potentially opens up avenues for engineering structures with spin-orbit coupling that can be controlled locally in space and/or time.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PRXQUANTUM.2.010321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Most proof-of-principle experiments for spin qubits have been performed using GaAs-based quantum dots because of the excellent control they offer over tunneling barriers and the orbital and spin degrees of freedom. Here, we present the first realization of high-quality single and double quantum dots hosted in an InAs two-dimensional electron gas (2DEG), demonstrating accurate control down to the few-electron regime, where we observe a clear Kondo effect and singlet-triplet spin blockade. We measure an electronic $g$-factor of $16$ and a typical magnitude of the random hyperfine fields on the dots of $\sim 0.6\, \mathrm{mT}$. We estimate the spin-orbit length in the system to be $\sim 5-10\, \mu \mathrm{m}$, which is almost two orders of magnitude longer than typically measured in InAs nanostructures, achieved by a very symmetric design of the quantum well. These favorable properties put the InAs 2DEG on the map as a compelling host for studying fundamental aspects of spin qubits. Furthermore, having weak spin-orbit coupling in a material with a large Rashba coefficient potentially opens up avenues for engineering structures with spin-orbit coupling that can be controlled locally in space and/or time.