SPPL: probabilistic programming with fast exact symbolic inference

Feras A. Saad, M. Rinard, Vikash K. Mansinghka
{"title":"SPPL: probabilistic programming with fast exact symbolic inference","authors":"Feras A. Saad, M. Rinard, Vikash K. Mansinghka","doi":"10.1145/3453483.3454078","DOIUrl":null,"url":null,"abstract":"We present the Sum-Product Probabilistic Language (SPPL), a new probabilistic programming language that automatically delivers exact solutions to a broad range of probabilistic inference queries. SPPL translates probabilistic programs into sum-product expressions, a new symbolic representation and associated semantic domain that extends standard sum-product networks to support mixed-type distributions, numeric transformations, logical formulas, and pointwise and set-valued constraints. We formalize SPPL via a novel translation strategy from probabilistic programs to sum-product expressions and give sound exact algorithms for conditioning on and computing probabilities of events. SPPL imposes a collection of restrictions on probabilistic programs to ensure they can be translated into sum-product expressions, which allow the system to leverage new techniques for improving the scalability of translation and inference by automatically exploiting probabilistic structure. We implement a prototype of SPPL with a modular architecture and evaluate it on benchmarks the system targets, showing that it obtains up to 3500x speedups over state-of-the-art symbolic systems on tasks such as verifying the fairness of decision tree classifiers, smoothing hidden Markov models, conditioning transformed random variables, and computing rare event probabilities.","PeriodicalId":20557,"journal":{"name":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453483.3454078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

We present the Sum-Product Probabilistic Language (SPPL), a new probabilistic programming language that automatically delivers exact solutions to a broad range of probabilistic inference queries. SPPL translates probabilistic programs into sum-product expressions, a new symbolic representation and associated semantic domain that extends standard sum-product networks to support mixed-type distributions, numeric transformations, logical formulas, and pointwise and set-valued constraints. We formalize SPPL via a novel translation strategy from probabilistic programs to sum-product expressions and give sound exact algorithms for conditioning on and computing probabilities of events. SPPL imposes a collection of restrictions on probabilistic programs to ensure they can be translated into sum-product expressions, which allow the system to leverage new techniques for improving the scalability of translation and inference by automatically exploiting probabilistic structure. We implement a prototype of SPPL with a modular architecture and evaluate it on benchmarks the system targets, showing that it obtains up to 3500x speedups over state-of-the-art symbolic systems on tasks such as verifying the fairness of decision tree classifiers, smoothing hidden Markov models, conditioning transformed random variables, and computing rare event probabilities.
具有快速精确符号推理的概率规划
我们提出了和积概率语言(Sum-Product Probabilistic Language, SPPL),这是一种新的概率编程语言,可以自动为广泛的概率推理查询提供精确的解决方案。SPPL将概率程序转换为和积表达式,这是一种新的符号表示和相关的语义域,扩展了标准和积网络,以支持混合类型分布、数字转换、逻辑公式以及点和集值约束。我们通过一种新的从概率程序到和积表达式的转换策略形式化了SPPL,并给出了事件概率的条件和计算的可靠精确算法。SPPL对概率程序施加了一系列限制,以确保它们可以转换为和积表达式,这允许系统利用新技术,通过自动利用概率结构来提高转换和推理的可伸缩性。我们实现了一个具有模块化架构的SPPL原型,并在系统目标的基准测试上对其进行了评估,结果表明,在验证决策树分类器的公平性、平滑隐马尔可夫模型、调节转换的随机变量和计算罕见事件概率等任务上,它比最先进的符号系统获得了高达3500倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信