An investigation of multistream plate-fin heat exchanger modelling and design: a review

IF 0.4 4区 工程技术 Q4 NUCLEAR SCIENCE & TECHNOLOGY
Kerntechnik Pub Date : 2023-06-02 DOI:10.1515/kern-2022-0119
N. O. M. Alyaseen, Salem Mehrzad, M. Saffarian
{"title":"An investigation of multistream plate-fin heat exchanger modelling and design: a review","authors":"N. O. M. Alyaseen, Salem Mehrzad, M. Saffarian","doi":"10.1515/kern-2022-0119","DOIUrl":null,"url":null,"abstract":"Abstract In line with population expansion and industrial development, the world’s energy consumption has been rising gradually over the past three decades. As a result, methods for energy conservation have been sought. One of the most common strategies is heat recovery, which is efficient and cost-effective to the extent possible. Heat recovery is not just about saving energy for primary consumption; it is also about lowering emissions and protecting the environment. In this respect, one of the most important strategies for heat recovery is to develop heat exchangers and exploit the energy associated with many of the processes’ output products in order to use it in new processes. Many researchers working in the field of heat engineering are now looking into novel heat transfer techniques. Use of the heat exchanger as a compact is one of these ways that might be considered. The current review therefore concentrates on the design of plate-fin heat exchangers (PFHE) and multi-stream plate-fin heat exchangers (MSPFHE) based on various models. The current review offers some suggestions for upcoming studies on improving heat transfer and minimizing power use.","PeriodicalId":17787,"journal":{"name":"Kerntechnik","volume":"19 1","pages":"457 - 474"},"PeriodicalIF":0.4000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kerntechnik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/kern-2022-0119","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In line with population expansion and industrial development, the world’s energy consumption has been rising gradually over the past three decades. As a result, methods for energy conservation have been sought. One of the most common strategies is heat recovery, which is efficient and cost-effective to the extent possible. Heat recovery is not just about saving energy for primary consumption; it is also about lowering emissions and protecting the environment. In this respect, one of the most important strategies for heat recovery is to develop heat exchangers and exploit the energy associated with many of the processes’ output products in order to use it in new processes. Many researchers working in the field of heat engineering are now looking into novel heat transfer techniques. Use of the heat exchanger as a compact is one of these ways that might be considered. The current review therefore concentrates on the design of plate-fin heat exchangers (PFHE) and multi-stream plate-fin heat exchangers (MSPFHE) based on various models. The current review offers some suggestions for upcoming studies on improving heat transfer and minimizing power use.
多流板翅式换热器的建模与设计研究综述
近三十年来,随着人口的增长和工业的发展,世界能源消耗逐渐上升。因此,人们一直在寻求节约能源的方法。最常见的策略之一是热回收,这是高效和经济的程度可能。热回收不仅仅是为一次消费节省能源;这也是关于减少排放和保护环境。在这方面,热回收最重要的策略之一是开发热交换器,并利用与许多工艺输出产品相关的能量,以便在新工艺中使用它。热工程领域的许多研究人员正在研究新的传热技术。使用热交换器作为紧凑型是可以考虑的这些方法之一。因此,本文主要讨论了基于不同模型的板式翅片换热器(PFHE)和多流板式翅片换热器(MSPFHE)的设计。本文对今后的研究提出了一些建议,以改善传热和减少功率使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Kerntechnik
Kerntechnik 工程技术-核科学技术
CiteScore
0.90
自引率
20.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Kerntechnik is an independent journal for nuclear engineering (including design, operation, safety and economics of nuclear power stations, research reactors and simulators), energy systems, radiation (ionizing radiation in industry, medicine and research) and radiological protection (biological effects of ionizing radiation, the system of protection for occupational, medical and public exposures, the assessment of doses, operational protection and safety programs, management of radioactive wastes, decommissioning and regulatory requirements).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信