Weight Enumerating Function, Number of Full Rank Sub-matrices and Network Coding

Mahesh Babu Vaddi, B. Rajan
{"title":"Weight Enumerating Function, Number of Full Rank Sub-matrices and Network Coding","authors":"Mahesh Babu Vaddi, B. Rajan","doi":"10.1109/ISIT.2019.8849273","DOIUrl":null,"url":null,"abstract":"In most of the network coding problems with k messages, the existence of binary network coding solution over ${\\mathbb{F}_2}$ depends on the existence of adequate sets of k-dimensional binary vectors such that each set comprises of linearly independent vectors. In a given k×n (n ≥ k) binary matrix, there exist $ \\binom{n}{k}$ binary sub-matrices of size k×k. Every possible k×k submatrix may be of full rank or singular depending on the columns present in the matrix. In this work, for full rank binary matrix G of size k×n satisfying certain condition on minimum Hamming weight, we establish a relation between the number of full rank sub-matrices of size k×k and the weight enumerating function of the error correcting code with G as the generator matrix. We give an algorithm to compute the number of full rank k×k submatrices.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"59 1","pages":"867-871"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In most of the network coding problems with k messages, the existence of binary network coding solution over ${\mathbb{F}_2}$ depends on the existence of adequate sets of k-dimensional binary vectors such that each set comprises of linearly independent vectors. In a given k×n (n ≥ k) binary matrix, there exist $ \binom{n}{k}$ binary sub-matrices of size k×k. Every possible k×k submatrix may be of full rank or singular depending on the columns present in the matrix. In this work, for full rank binary matrix G of size k×n satisfying certain condition on minimum Hamming weight, we establish a relation between the number of full rank sub-matrices of size k×k and the weight enumerating function of the error correcting code with G as the generator matrix. We give an algorithm to compute the number of full rank k×k submatrices.
权值枚举函数、满秩子矩阵数与网络编码
在大多数具有k个消息的网络编码问题中,${\mathbb{F}_2}$上的二进制网络编码解的存在性取决于k维二进制向量的足够集合的存在性,使得每个集合由线性无关的向量组成。在给定k×n (n≥k)个二进制矩阵中,存在$ \binom{n}{k}$个大小为k×k的二进制子矩阵。每个可能的k×k子矩阵可以是满秩的,也可以是奇异的,这取决于矩阵中存在的列。本文对大小为k×n的满秩二值矩阵G满足最小Hamming权值的一定条件,建立了大小为k×k的满秩子矩阵的个数与以G为生成矩阵的纠错码的权值枚举函数之间的关系。给出了一种计算满秩k×k子矩阵个数的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信