Spatial prediction of air pollution levels using a hierarchical Bayesian spatiotemporal model in Catalonia, Spain

M. Saez, M. Barceló
{"title":"Spatial prediction of air pollution levels using a hierarchical Bayesian spatiotemporal model in Catalonia, Spain","authors":"M. Saez, M. Barceló","doi":"10.1101/2021.06.06.21258419","DOIUrl":null,"url":null,"abstract":"Our objective in this work was to present a hierarchical Bayesian spatiotemporal model that allowed us to make spatial predictions of air pollution levels in an effective way and with very few computational costs. We specified a hierarchical spatiotemporal model, using the Stochastic Partial Differential Equations of the integrated nested Laplace approximations approximation. This approach allowed us to spatially predict, in the territory of Catalonia (Spain), the levels of the four pollutants for which there is the most evidence of an adverse health effect. Our model allowed us to make fairly accurate spatial predictions of both long-term and short-term exposure to air pollutants, with a low computational cost. The only requirements of the method we propose are the minimum number of stations distributed throughout the territory where the predictions are to be made, and that the spatial and temporal dimensions are either independent or separable.","PeriodicalId":12033,"journal":{"name":"Environ. Model. Softw.","volume":"1 1","pages":"105369"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environ. Model. Softw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2021.06.06.21258419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Our objective in this work was to present a hierarchical Bayesian spatiotemporal model that allowed us to make spatial predictions of air pollution levels in an effective way and with very few computational costs. We specified a hierarchical spatiotemporal model, using the Stochastic Partial Differential Equations of the integrated nested Laplace approximations approximation. This approach allowed us to spatially predict, in the territory of Catalonia (Spain), the levels of the four pollutants for which there is the most evidence of an adverse health effect. Our model allowed us to make fairly accurate spatial predictions of both long-term and short-term exposure to air pollutants, with a low computational cost. The only requirements of the method we propose are the minimum number of stations distributed throughout the territory where the predictions are to be made, and that the spatial and temporal dimensions are either independent or separable.
使用分层贝叶斯时空模型对西班牙加泰罗尼亚地区空气污染水平的空间预测
我们在这项工作中的目标是提出一个层次贝叶斯时空模型,使我们能够以一种有效的方式和很少的计算成本对空气污染水平进行空间预测。我们指定了一个分层的时空模型,使用随机偏微分方程的积分嵌套拉普拉斯近似近似。这种方法使我们能够在空间上预测加泰罗尼亚(西班牙)境内最能证明对健康产生不利影响的四种污染物的水平。我们的模型使我们能够以较低的计算成本,对空气污染物的长期和短期暴露做出相当准确的空间预测。我们提出的方法的唯一要求是,分布在要进行预测的地区的最少台站数量,并且空间和时间维度要么是独立的,要么是可分离的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信