Image colourisation using graph-based semi-supervised learning

Beibei Liu, Z.-M. Lu
{"title":"Image colourisation using graph-based semi-supervised learning","authors":"Beibei Liu, Z.-M. Lu","doi":"10.1049/IET-IPR.2008.0112","DOIUrl":null,"url":null,"abstract":"A novel colourisation algorithm using graph-based semi-supervised learning (SSL) is presented. We show that the assumption of the colourisation problem is consistent with the fundamental of graph-based SSL methods. Satisfactory results are obtained in the experiments that validate the proposed algorithm. To reduce the time and memory requirements when dealing with large scale images, we further propose a two-stage speedup approach. Comparative results show that the computation complexity is dramatically reduced.","PeriodicalId":13486,"journal":{"name":"IET Image Process.","volume":"12 1","pages":"115-120"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IET-IPR.2008.0112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

A novel colourisation algorithm using graph-based semi-supervised learning (SSL) is presented. We show that the assumption of the colourisation problem is consistent with the fundamental of graph-based SSL methods. Satisfactory results are obtained in the experiments that validate the proposed algorithm. To reduce the time and memory requirements when dealing with large scale images, we further propose a two-stage speedup approach. Comparative results show that the computation complexity is dramatically reduced.
使用基于图的半监督学习的图像着色
提出了一种基于图的半监督学习(SSL)的着色算法。我们表明,着色问题的假设与基于图形的SSL方法的基本原理是一致的。实验验证了该算法的有效性,取得了满意的结果。为了减少处理大规模图像时对时间和内存的需求,我们进一步提出了一种两阶段加速方法。对比结果表明,该方法大大降低了计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信