Urmimala Roy, T. Pramanik, Subhendu Roy, Avhishek Chatterjee, L. F. Register, S. Banerjee
{"title":"Machine Learning for Statistical Modeling","authors":"Urmimala Roy, T. Pramanik, Subhendu Roy, Avhishek Chatterjee, L. F. Register, S. Banerjee","doi":"10.1145/3440014","DOIUrl":null,"url":null,"abstract":"We propose a methodology to perform process variation-aware device and circuit design using fully physics-based simulations within limited computational resources, without developing a compact model. Machine learning (ML), specifically a support vector regression (SVR) model, has been used. The SVR model has been trained using a dataset of devices simulated a priori, and the accuracy of prediction by the trained SVR model has been demonstrated. To produce a switching time distribution from the trained ML model, we only had to generate the dataset to train and validate the model, which needed ∼500 hours of computation. On the other hand, if 106 samples were to be simulated using the same computation resources to generate a switching time distribution from micromagnetic simulations, it would have taken ∼250 days. Spin-transfer-torque random access memory (STTRAM) has been used to demonstrate the method. However, different physical systems may be considered, different ML models can be used for different physical systems and/or different device parameter sets, and similar ends could be achieved by training the ML model using measured device data.","PeriodicalId":6933,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","volume":"21 1","pages":"1 - 17"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3440014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We propose a methodology to perform process variation-aware device and circuit design using fully physics-based simulations within limited computational resources, without developing a compact model. Machine learning (ML), specifically a support vector regression (SVR) model, has been used. The SVR model has been trained using a dataset of devices simulated a priori, and the accuracy of prediction by the trained SVR model has been demonstrated. To produce a switching time distribution from the trained ML model, we only had to generate the dataset to train and validate the model, which needed ∼500 hours of computation. On the other hand, if 106 samples were to be simulated using the same computation resources to generate a switching time distribution from micromagnetic simulations, it would have taken ∼250 days. Spin-transfer-torque random access memory (STTRAM) has been used to demonstrate the method. However, different physical systems may be considered, different ML models can be used for different physical systems and/or different device parameter sets, and similar ends could be achieved by training the ML model using measured device data.