On ϕ - ( n,N ) -ideals of Commutative Rings

Pub Date : 2023-08-29 DOI:10.1142/s1005386723000391
Adam Anebri, N. Mahdou, Ünsal Tekir, E. Yıldız
{"title":"On ϕ - ( n,N ) -ideals of Commutative Rings","authors":"Adam Anebri, N. Mahdou, Ünsal Tekir, E. Yıldız","doi":"10.1142/s1005386723000391","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a commutative ring with nonzero identity and [Formula: see text] be a positive integer. In this paper, we introduce and investigate a new subclass of [Formula: see text]-[Formula: see text]-absorbing primary ideals, which are called [Formula: see text]-[Formula: see text]-ideals. Let [Formula: see text] be a function, where [Formula: see text] denotes the set of all ideals of [Formula: see text]. A proper ideal [Formula: see text] of [Formula: see text] is called a [Formula: see text]-[Formula: see text]-ideal if [Formula: see text] and [Formula: see text] imply that the product of [Formula: see text] with [Formula: see text] of [Formula: see text] is in [Formula: see text] for all [Formula: see text]. In addition to giving many properties of [Formula: see text]-[Formula: see text]-ideals, we also use the concept of [Formula: see text]-[Formula: see text]-ideals to characterize rings that have only finitely many minimal prime ideals.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386723000391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text] be a commutative ring with nonzero identity and [Formula: see text] be a positive integer. In this paper, we introduce and investigate a new subclass of [Formula: see text]-[Formula: see text]-absorbing primary ideals, which are called [Formula: see text]-[Formula: see text]-ideals. Let [Formula: see text] be a function, where [Formula: see text] denotes the set of all ideals of [Formula: see text]. A proper ideal [Formula: see text] of [Formula: see text] is called a [Formula: see text]-[Formula: see text]-ideal if [Formula: see text] and [Formula: see text] imply that the product of [Formula: see text] with [Formula: see text] of [Formula: see text] is in [Formula: see text] for all [Formula: see text]. In addition to giving many properties of [Formula: see text]-[Formula: see text]-ideals, we also use the concept of [Formula: see text]-[Formula: see text]-ideals to characterize rings that have only finitely many minimal prime ideals.
分享
查看原文
交换环的φ - (n, n) -理想
设[公式:见文]是一个非零单位元的交换环,且[公式:见文]是一个正整数。本文引入并研究了[公式:见文]-[公式:见文]吸收基本理想的一个新子类,称为[公式:见文]-[公式:见文]-理想。设[公式:见文]是一个函数,其中[公式:见文]表示[公式:见文]的所有理想的集合。如果[公式:见文]和[公式:见文]意味着[公式:见文]与[公式:见文]的[公式:见文]的[公式:见文]与[公式:见文]的[公式:见文]的[公式:见文]的乘积为[公式:见文],则[公式:见文]的适当理想[公式:见文]被称为[公式:见文]-[公式:见文]-理想。除了给出[公式:见文]-[公式:见文]-理想的许多性质外,我们还使用[公式:见文]-[公式:见文]-理想的概念来表征只有有限个最小素数理想的环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信