A characterization of Riesz-dual sequences which are near-Markushevich bases

IF 0.6 4区 数学 Q4 MATHEMATICS, APPLIED
Ali Reza Neisi, M. Asgari
{"title":"A characterization of Riesz-dual sequences which are near-Markushevich bases","authors":"Ali Reza Neisi, M. Asgari","doi":"10.1142/s021902572150017x","DOIUrl":null,"url":null,"abstract":"The concept of Riesz-duals of a frame is a recently introduced concept with broad implications to frame theory in general, as well as to the special cases of Gabor and wavelet analysis. In this paper, we introduce various alternative Riesz-duals, with a focus on what we call Riesz-duals of type I and II. Next, we provide some characterizations of Riesz-dual sequences in Banach spaces. A basic problem of interest in connection with the study of Riesz-duals in Banach spaces is that of characterizing those Riesz-duals which can essentially be regarded as M-basis. We give some conditions under which an Riesz-dual sequence to be an M-basis for [Formula: see text].","PeriodicalId":50366,"journal":{"name":"Infinite Dimensional Analysis Quantum Probability and Related Topics","volume":"14 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infinite Dimensional Analysis Quantum Probability and Related Topics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021902572150017x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The concept of Riesz-duals of a frame is a recently introduced concept with broad implications to frame theory in general, as well as to the special cases of Gabor and wavelet analysis. In this paper, we introduce various alternative Riesz-duals, with a focus on what we call Riesz-duals of type I and II. Next, we provide some characterizations of Riesz-dual sequences in Banach spaces. A basic problem of interest in connection with the study of Riesz-duals in Banach spaces is that of characterizing those Riesz-duals which can essentially be regarded as M-basis. We give some conditions under which an Riesz-dual sequence to be an M-basis for [Formula: see text].
一类接近markushevich碱基的riesz -对偶序列
框架的riesz -对偶概念是最近才提出的概念,对框架理论以及Gabor和小波分析的特殊情况具有广泛的意义。在本文中,我们介绍了各种可选的riesz -dual,重点是我们称之为I型和II型的riesz -dual。其次,我们给出了Banach空间中riesz -对偶序列的一些刻画。Banach空间中riesz -对偶研究的一个基本问题是如何刻画那些本质上可以看作m基的riesz -对偶。我们给出了riesz对偶序列是m基的若干条件[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: In the past few years the fields of infinite dimensional analysis and quantum probability have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. The number of first-class papers in these fields has grown at the same rate. This is currently the only journal which is devoted to these fields. It constitutes an essential and central point of reference for the large number of mathematicians, mathematical physicists and other scientists who have been drawn into these areas. Both fields have strong interdisciplinary nature, with deep connection to, for example, classical probability, stochastic analysis, mathematical physics, operator algebras, irreversibility, ergodic theory and dynamical systems, quantum groups, classical and quantum stochastic geometry, quantum chaos, Dirichlet forms, harmonic analysis, quantum measurement, quantum computer, etc. The journal reflects this interdisciplinarity and welcomes high quality papers in all such related fields, particularly those which reveal connections with the main fields of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信