D. Ramaccia, D. Sounas, A. Alú, A. Toscano, F. Bilotti
{"title":"Advancements in Doppler cloak technology: Manipulation of Doppler Effect and invisibility for moving objects","authors":"D. Ramaccia, D. Sounas, A. Alú, A. Toscano, F. Bilotti","doi":"10.1109/METAMATERIALS.2016.7746521","DOIUrl":null,"url":null,"abstract":"In this contribution, we present some important advancements in Doppler cloak technology, which is based on the frequency mixing property of linear momentum-biased metamaterial, whose artificial permittivity function is modulated in space and time. The importance of such a technology is given by the possibility to manipulate the Doppler effect and restore the invisibility of cloaked object in relativistic motion. Here, we review the main characteristics of a conventional Doppler cloak, consisting of a system composed of a planar reflector covered by a spatio-temporally modulated slab. We demonstrate that such a scheme presents some drawbacks in terms of efficiency and, therefore, an enhanced version based on a momentum-biased parallel-plate medium is presented and discussed.","PeriodicalId":6587,"journal":{"name":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","volume":"56 1","pages":"295-297"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/METAMATERIALS.2016.7746521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this contribution, we present some important advancements in Doppler cloak technology, which is based on the frequency mixing property of linear momentum-biased metamaterial, whose artificial permittivity function is modulated in space and time. The importance of such a technology is given by the possibility to manipulate the Doppler effect and restore the invisibility of cloaked object in relativistic motion. Here, we review the main characteristics of a conventional Doppler cloak, consisting of a system composed of a planar reflector covered by a spatio-temporally modulated slab. We demonstrate that such a scheme presents some drawbacks in terms of efficiency and, therefore, an enhanced version based on a momentum-biased parallel-plate medium is presented and discussed.